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ABSTRACT

A historical perspective is presented for three important contributions of Emilio Rosenblueth to
structural dynamics: (1) two modal combination rules; (2) a rule to combine effects of ground
motion components; and (3) a response analysis procedure for multiple-support excitation.
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INTRODUCTION

Emilio Rosenblueth, through his contributions to research in earthquake engineering, had a profound
influence on earthquake analysis and design of structures. His many seminal contributions have
covered an amazingly wide variety of subjects, and many have become an integral part of textbooks
and engineering practice.

They are so well integrated into earthquake engineering as we know it today that many researchers
and engineers using these procedures are unaware of their origins. This paper provides a historical
perspective of three of the perhaps most important contributions of Emilio Rosenblueth to the
analysis of the dynamic response of structures. The contributions selected are (1) two rules for
combining the peak modal responses to estimate the peak response of multi-degree-of-freedom
(MDF) systems; (2) a rule to combine the peak responses due to various components of ground
motion; and (3) a response analysis procedure for multiple support excitation.



MODAL COMBINATION RULES

Modal Analysis: A Review (Chopra, 1995)

The response of a viscously damped system described by the vector u of nodal displacements relative
to the moving base is governed by the N (= number of degrees of freedom) differential equations

mii + cu + ku = peg () (1)

where the effective earthquake forces are

Pert(t) = —muiig(¢) (2)

In Egs. (1) and (2) m, c, and k are the mass, damping, and stiffness matrices, iy(?) is the ground
acceleration, and ¢ is the influence vector representing the displacements of the masses resulting
from static application of a unit-ground displacement, u, = 1.

The spatial distribution s = mue of the effective earthquake forces is expanded as

N N
me = Z Sp = Z F'nmo,, (3)
n=1

n=1

where ¢,, are the natural vibration modes of the system and

Fn = Ln = d)TmL Mn = d’£m¢n (4)

L,
M,
The contribution of the nth mode to s is
s, =,m¢,, (5)

which is independent of how the modes are normalized. Equation (3) may be viewed as an expansion
of me in terms of inertia force distributions s, associated with natural vibration modes.

The nth-mode contribution r,(¢) to any response quantity r(t) is

ra(t) = ’":ztAn(t) (6)

where %t denotes the modal static response, the static value of r due to external forces s,. The
algebraic sign of 2! is a property of the structure and the selected response quantity r. In Eq. (6),



An(t) = wyDn(t) (7)

D,(t) and A,(t) are the displacement and pseudo-acceleration response of the nth-mode single-
degree-of-freedom (SDF) system, an SDF system with vibration properties—natural period T,
(natural frequency w,) and damping ratio {,—of the nth mode of the MDF system excited by
ground acceleration ii4(t).

Combining the response contributions of all the modes gives the total response:

N N

r() = ra(t) =Y rida() (8)

n=1 n=1

Peak Modal Responses

The peak value of the nth-mode contribution r,(t) to response r(t) can be obtained from the
earthquake response spectrum or design spectrum:

Tno =T Ay (9)

where the subscript “o” denotes the peak value, defined as the maximum of the absolute value, and
An = A(Ty, (n) is the pseudo-acceleration response spectrum ordinate corresponding to natural
period T,, and damping ratio {,. The algebraic sign of r,, is the same as that of rst because A, is
positive by definition. Although it has an algebraic sign, r,, will be referred to as the peak modal
response because it corresponds to the peak value of A,(t).

The peak value r, of the total response r(t) is estimated by combining the peak modal responses
rmo (n =1, 2, ..., N) according to the well known modal combination rules: square-root-of-sum-of-
squares (SRSS) rule or complete quadratic combination (CQC) rule, as appropriate. The algebraic
sign of ry,, is relevant in the CQC rule, but inconsequential in the SRSS rule.

SRSS Rule

The SRSS rule for modal combination is

N 1/2
To = (Z T?‘w) (10)

n=1
The algebraic signs of r,, do not affect the value of r, given by the SRSS rule.

The basis for Eq. (10) was developed by Rosenblueth in his Ph.D. thesis (1951); contained on
page 97 is the following equation (in different notation):

N 1/2
E(To) = (Z [E(rno)]2) (11)



where E(z) denotes the expectation of z.

Based on this thesis, an ASCE paper (Goodman, Rosenblueth, and Newmark, 1953) contains the
result:

N 1/2
re = (Z rﬁd) (12)

n=1

where the subscript “d” denotes the design response.

Considering that, in the early 1950’s, the subject of earthquake dynamics of structures was in its
infancy and random vibration theory was unknown to structural engineers, Rosenblueth’s results
are especially impressive. Equations (11) and (12) were derived by expressing structural response
as a convolution integral of ground acceleration and the unit impulse response function, idealizing
the ground acceleration as white noise, and using probability theory. Although the “white noise”
terminology was apparently not used, it was implied by the assumptions (Goodman, Rosenblueth,
and Newmark, 1953):

“ . . the writers consider motions consisting of random arrays of concentrated

acceleration pulses. . . . The pulses are assumed to be distributed in time in a random
order, either at small, uniformly spaced intervals or at randomly spaced instants of
time.”

Now contained in textbooks and taken for granted in engineering practice, the SRSS rule was first
applied in the design of the Latino Americana tower in Mexico City in 1950. In a letter to me dated
August 3, 1993, Rosenblueth stated:

“If I’m not mistaken, when the Holy Ghost descended on me one cold night in early
1950 in Urbana and told me about SRSS combination of modal responses, He hadn’t
told anyone else. This allowed me to devote the sultry summer to computing the
combined responses (which I had computed in pre-Illiac [computer] days) for the
Latino Americana tower, of which Nate [Newmark] was consultant, and so SRSS was
applied in design for the first time. SRSS was proposed in my Ph.D. thesis, presented
in 1951.”

This modal combination rule usually provides excellent response estimates for structures with
well-separated natural frequencies. This limitation has not always been recognized in applying this
rule to practical problems, and at times it has been misapplied to systems with closely spaced
natural frequencies, such as piping systems in nuclear power plants and multistory buildings with
asymmetric plan.

CQC Rule

The CQC rule for modal combination is applicable to a wider class of structures as it overcomes the

limitations of the SRSS rule. According to the CQC rule,

N N 1/2
To == (Z Z Pinriorno> (13)

1=1 n=1



Each of the N? terms on the right side of this equation is the product of the peak responses in the
ith and nth modes and the correlation coefficient p;, for these two modes; p;, varies between 0 and
1 and p;, = 1 for i = n. Thus, Eq. (13) can be written as

N N N 1/2
o ( Z wa + Z Pinriorno) (14)

n=1 =1 n=1

i#£n

to show that the first summation on the right side is identical to the SRSS combination rule of
Eq. (10); each term in this summation is obviously positive. The double summation includes all the
cross (¢ # n) terms; each of these terms may be positive or negative. A cross term is negative when
the modal static responses r$* and r$' assume opposite signs. Thus, the estimate for r, obtained by
the CQC rule may be larger or smaller than the estimate provided by the SRSS rule.

The preceding modal combination rule was first derived by E. Rosenblueth and J. Elorduy (1969),
although they did not give it the CQC name, which is due to A. Der Kiureghian (1981). This
result was based on an idealization of earthquakes as stationary Gaussian processes, but modified
to recognize the transient character of actual ground motions. The methods that led to this result
were extensions of Rosenblueth’s early work underlying the SRSS rule.

The 1971 textbook Fundamentals of Earthquake Engineering by N. M. Newmark and E. Rosenblueth
gives the Rosenblueth-Elorduy equations for the correlation coefficient:

1
1+ €

m

Pin = (15)

where

. — (2 _ a1 — (2 2
S A8 Skt e VA Skl S S (16)
C,’wi +C:1,wn Wnps

s is the duration of the segment of white noise. Equations (15) and (16) show that pin = pni;
0 < pin <1; and p;p, = 1 for 7 = n or for two modes with equal frequencies and equal damping
ratios.

Although used in some research studies (e.g. Kan and Chopra, 1977), this important result was not
used very widely in engineering practice for many years perhaps for two reasons. First, the statement
defining the algebraic sign of 7,, may have been too subtle. This definition (with appropriate change
in notation) appeared in Newmark and Rosenblueth, 1971:

“ .. rno is to be taken with the sign that t,, [defined by the authors as the transfer
function for r,, but generally known as the unit impulse response function for r,] has
when it attains its maximum numerical value.”

Second, it was not obvious how to define the duration s for an actual ground motion or a given
design spectrum (Villaverde, 1984), and the recommendations for s (e.g., 12.5 sec. for earthquakes
on the west coast of the United States) were not widely recognized (Rosenblueth and Esteva, 1964;
Newmark and Rosenblueth, 1971, page 275).



Later, using a different approach based on random vibration theory in the frequency domain,
Eq. (13) was derived together with the following equation for the correlation coefficient (Der
Kiureghian, 1981):

= 8\/ Ci(n((i + /Binc'n)ﬁzfz (17)
Pin = (T2 B2Y2 + 4CiCnBin(1 + BZ,) + 42 + C2)BE,

where Bin, = w;/wyn. This equation also implies that pin = ppi, pin = 1 for ¢ = n or for two modes
with equal frequencies and equal damping ratios. For equal modal damping ¢; = {, = ¢ this equation
simplifies to

o 8¢2(1 + Bin)B2*
Pin = (T2 BLY 4 4C2Bin(1 ¥ Bin)? (18)

This form of the correlation coefficient was easier to use relative to Eqgs. (15) and (16), and it gained
widespread popularity.

In order to compare the two equations for the correlation coefficient, Eq. (15) is specialized for
systems with same damping ratio in all modes subjected to earthquake excitation with duration s
long enough to replace Eq. (16b) by (|, = (,. We substitute {; = (, = ¢ in Eq. (16a), introduce
Bin = w;/wy, and insert Eq. (16a) into Eq. (15) to obtain

G+ Bin)?
Pin = (1 — ,Bin)z +4czﬂin (19)

Figure 1 shows Eqs. (18) and (19) for the correlation coefficient p;n, plotted as a function of
Bin = wi/w, for four damping values: ( = 0.02, 0.05, 0.10, and 0.20. Observe that the two
expressions give essentially identical values for p;,.
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Fig. 1. Variation of correlation coefficient p;,, with modal frequency

ratio Bin = wi/wn for four damping values; abscissa scale

is logarithmic; Eqs. (18) and (19) are plotted in solid and
dashed lines, respectively.



However, pin should depend on the effective duration s of the ground motion, which is neglected in
Egs. (17) and (18). In this sense, Eqs. (15) and (16) have a wider range of applicability.

Figure 1 also provides an understanding of the correlation coefficient. Observe that this coefficient
rapidly diminishes as the two natural frequencies w; and w, move farther apart. This is especially
the case at small damping values that are typical of structures. In other words, it is only in a narrow
range of B, around B;, = 1 that p;, has significant values; and this range depends on damping. For
structures with well-separated natural frequencies the coefficients p;, vanish; as a result all cross
(i # n) terms in the CQC rule, Eq. (14), can be neglected and it reduces to the SRSS rule, Eq. (10).

COMBINED EFFECTS OF GROUND MOTION COMPONENTS

Most building codes specify how to combine the effects of various ground motion components. For
example, the Uniform Building Code states:

“The requirement. . . may be satisfied by designing such elements for 100 percent of
prescribed seismic forces in one direction plus 30 percent of the prescribed forces in the
perpendicular direction. The combination requiring the greater component strength
shall be used for design.”

While such combination rules had been proposed and used in the early 1970’s, it appears that
the first published work that provides a rational basis for these rules is due to Rosenblueth and
Contreras (1977). Their approach assumes that such effects are uncorrelated Gaussian processes or
that correlations are taken into account in computing modal responses. A simple approximation was
derived under the additional assumption that the failure surfaces are convex.

The authors state that:

“This approximate procedure is applied as follows:

“]. Compute the responses to gravity loads and to the J components of ground
motion regarded as potentially significant. Let these responses be arranged into
vectors r = r, and r;, respectively, with j = 1,2, ..., J.

“2. Obtain the vectors

J
r=ry,+ Z a;r; (20)
=1

assigning plus and minus signs to a;r;, ordering the r; values in all possible
combinations, and giving the a; terms the values in Table 1.

“3, If the problem is one of analysis, find whether all points fall within the failure
surface. If the problem is one of design, assign the design parameters such values
that the safe domain will contain all the points.”

It was shown that a; =1 and a; = 0.3 for j > 2.

The Acknowledgements section includes the following statement:



“The simplified procedure was proposed early in 1975 (with a; = 1/3 for j > 2) by
A. S. Veletsos. Even earlier N. M. Newmark proposed this procedure with a; = 0.4
for j > 2. The main ideas in the present paper were developed in Ref. 8 [Rosenblueth,
1975).”

RESPONSE ANALYSIS FOR MULTIPLE SUPPORT EXCITATION

The governing equations for MDF systems excited by prescribed motions ig(¢) at the various
supports (I = 1,2,...,N,) of the structure are the same as Eq. (1) with the effective earthquake
forces (Chopra, 1995)

Ny
Pert(t) = — ) musiig(t) (21)
=1

instead of Eq. (2) where ¢; is the vector of static displacements in the structural DOF due to ug; = 1.
The displacement response of the structure contains two parts (Chopra, 1995):

1. The dynamic displacements:
N, N
ut) = > Y Tag,Duft) (22)
=1 n=1

where

Ly
Tw=%7 Lu=éimu M.=¢,mé, (29)

and D(t) is the deformation response of the nth-mode SDF system to support acceleration igi(t).

2. The quasistatic displacements u® are given by

Nﬂ
u =) qug(t) (24)
=1

Combining the two parts gives the total displacements in the structural DOF’s:

N, N, N
ul(t) = > ug(t) + Y O TaipnDuilt) (25)
{=1

=1 n=1

This well known procedure is now a part of textbooks and engineering practice. This author was first
exposed to this treatment in the fall of 1964 when Prof. Rosenblueth presented a graduate course
at the University of California, Berkeley and distributed to the class a draft of the early chapters



of his book with N. M. Newmark; this procedure appeared in Section 2.4 of the published book.
Soon thereafter, we at Berkeley used the procedure to analyze the earthquake response of earth
dams (Chopra et al., 1969). Later, it was used in many research publications. However, for many
years its practical application was limited for lack of analytical methods and instrumental records
to define the spatial variation of ground motion. With advances in these subjects Rosenblueth’s

analysis procedure is being rediscovered and applied to practical problems, e.g., the seismic retrofit
of the Golden Gate Bridge and the San Francisco-Oakland Bay Bridge.
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