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ABSTRACT

A unified Bayesian statistical framework is described for system identification which can be used to
extract important information for earthquake-resistant design from the measured seismic response of
structures. In this approach, the “best” (uptimal) models within a chosen class of models are those
which are locally most probable based on the available data. Using the methodology, one can determine
the prediction accuracy of the optimal structural models, the precision of the parameter estimates of
these models as well as the precision of the optimal prediction-error probability models, the updated
predictive probability density function for the structural response even when there are multiple optimal
models, and a principle of parsimony for comparing different classes of models on the same data. The
application of modal identification to measired seismic response from some buildings, a bridge and an
off-shore platform is reviewed. An example is also given of how the methodology can be used to handle
the nonuniqueness in structural model identification. This often arises in practice because of the low
density of sensors which is typical of structural seismic instrumentation arrays.
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INTRODUCTION

Because of their large size and large inertia, the dynamic behavior of civil structures such as tall build-
ings, bridges and dams can not be studied as complete systems in the laboratory. Also, for similar
reasons, these structures are difficult to excite to large response amplitudes in field tests. This leaves
a great deal of uncertainty about their detailed dynamic behavior and their ultimate capacity to resist
strong earthquake shaking. Therefore, earthquake engineers in many countries have made a concerted
effort to instrument structures to record their motion during earthquakes in order to quantitatively
assess earthquake-resistant design practices and to provide information to improve these practices. For
example, one of the largest instrumentation programs is run by the Division of Mines and Geology,
California Department of Conservation (Shakal et al, 1988), who have accelerometer arrays distributed
over 135 buildings, 35 bridges and 20 dams, in addition to ground motion stations, throughout Cal-
ifornia. The worldwide efforts to capture the seismic response of structures have been rewarded by
an increasing number of sets of structural strong-motion records. For example, during just one recent



event, the 1994 Northridge earthquake in California, sets of acceleration records were obtained from the
CDMG/CSMIP network from 57 buildings, 12 dams, 6 bridges, an airport control tower and a power
plant, while the U.S. Geological Survey’s National Strong-Motion Program produced records from 37
buildings, 12 dams, 1 bridge and 7 water-distribution facilities (Hall, 1994).

Despite the importance of structural strong-motion records to the earthquake engineering profession,
analysis of these data has lagged far behind their rate of collection, with only the occasional example
appearing in the literature. This situation may be partly a result of insufficient funds for these types
of studies, but also because many researchers and engineers are not fully conversant with systematic
computer-based techniques for extracting information. These techniques are known collectively as sys-
tem identification methods in engineering, but a similar activity occurs in other fields such as science
and economics under various names: inverse problems, time series analysis, statistical inference, etc.
The principal difference between the applications in these fields is the amount and type of prior infor-
mation used in the underlying models. In structural dynamics, for example, the theory of mechanics
and other engineering information is available to be used in the system identification process.

There are three major steps in system identification:

1. Specification of the mathematical structure of a model for the system (e.g. linear dynamics with
prescribed degrees of freedom). This can be done using physical laws and other information about
the internal structure of the system, or by a “black-box” approach using some convenient general
model class such as auto-regressive moving-average {ARMA) models or neural networks. This step of
the process can be viewed as defining a class of possible models M where each member of M 1s given
by assigning values to the “free” parameters in the underlying model. In theory, a “nonparametric”
class of models can be used where each member is given by specifying functions, such as impulse
response functions or transfer functions for linear models, but in practice it is more efficient to use
a parameterized form of the functions to reduce the effects of “noise” during estimation.

2. Estimation of the model parameters from measurements made on the system. In effect, the objective
is to use the system data to determine the “best” model in the class M. A central aspect is the
criterion for choosing the “best” model. Usually it involves a measure of fit between the measured
system output and the corresponding model output, as in “least-squares output-error” methods, or
the fit of the data to the mathematical equation of the model, as in “least-squares equation-error”
methods. Any rational criterion should relate to model accuracy, although the prediction accuracy
of the “best” model in M is typically not quantified. Also, if there are multiple “best” models in M
based on the data, it is usually not clear how to proceed.

3. Evaluation of whether the model is adequate for its intended purpose. If it is not, then a new class of
models can be selected, typically by altering the mathematical structure of the original underlying
model, and all three steps repeated. This evaluation step is non-trivial and yet very important. If the
identified “best” model is to be used to predict the response of the system, then it is a well-known
pitfall to judge its prediction accuracy on the basis of how well it “fits” the available data. One
strategy is to use part of the data for estimation and the remainder for evaluation, but this sacrifices
data which could be used to improve the model identification. A useful model-building tool is to
have a “Principle of Parsimony” or “Occam’s Razor”, which specifies how far to go in trading-off
model simplicity against the goodness of fit to the available data (Jeffreys, 1961; Gull, 1988).

Some general texts on system identification are Eykhoff (1974), Goodwin and Payne (1977), and Ljung
(1987); while publications reviewing methods for structural dynamics applications include Pilkey and
Cohen (1972), Hart and Yao (1976), Natke (1982), Shinozuka et al (1982) and Imai et al (1989). Early
reviews of the application of system identification methods to strong motion records from structures
can be found in Beck (1978, 1982). The principal goals of this latter application are to learn about
the earthquake performance of structures, to assess seismic design codes, and to assess and improve



modelling capabilites for dynamic design. There is also increasing interest in applying these methods
to dynamic test data to identify high-fidelity models for the design of controllers for structural response
control and to develop global methods for structural damage detection (Natke and Yao, 1988).

A survey of the system identification literature reveals a plethora of methods, making it difficult for the
novice to the field to know which methods work well with real data. For structural identification, few
methods pass the requirement that they be able to handle all of the following issues arising in practice:

1. The dynamic test data is incomplete relative to the level of detail desired to understand the system
behavior. For example, the set of observed DOF (degrees of freedom) is a small subset of the set of
DOF of interest, and the number of identifiable modes of vibration is much less than the number of
DOF of interest.

2. The dynamic test data is contaminated by measurement noise.

3. The chosen class of models does not contain the actual structural system. Because any mathematical
model is only an approximation of the real behaviour of a structure, model error always exists and
there are no “true” values of the model parameters.

4. In order to reduce modelling uncertainties, the description of the class of structural models should be
able to include as much prior information as possible about the structural system.

The underlying motivation for applying system identification to measured seismic response is that it
is currently not possible to accurately predict this response using analytical (theoretical) structural
models. This is because there are many sources of modelling errors which lead to uncertain accuracy
in the predicted response: variations of the material properties during manufacture; inexact modelling
of the material constitutive behavior; uncertainties introduced during the construction process; inexact
modelling of the boundary conditions (e.g. there are no exact pinned or fixed joints); errors because
of the spatial discretization of the distributed structural system; unmodelled features such as neglected
“nonstructural” components; and so on.

Because of these modelling errors, system identification is best tackled as a statistical inference problem.
This can be done by imbedding the “deterministic” structural models within a class of probability
models so that the structural models give a predictable (“systematic”) part and the prediction error
is modelled as an uncertain (“random”) part. Eykhoff (1974), Goodwin and Payne (1977) and Ljung
(1987), for example, all emphasize a statistical approach to system identification using a “classical”
statistical framework. Recently, powerful statistical techniques have been developed using a Bayesian
statistical framework, including the Principle of Maximum (Information) Entropy (e.g. Box and Tiao,
1973; Jaynes, 1983; Bretthorst, 1988). Beck (1989) and Beck and Katafygiotis (1991) have used such a
framework to develop a general system ideutification approach which is capable of handling linear and
nonlinear models even when they are not uniquely identifiable based on the available data. In fact, the
method addresses all the previous enumerated practical difficulties. This statistical system identification
framework is presented here with some new extensions. Some applications to modal identification and
structural model identification (model updating) are then reviewed.

STATISTICAL SYSTEM IDENTIFICATION

It is assumed that a general mathematical form has been chosen to specify a class of models M describing
the input-output behavior of a structure, but that there are free parameters @ € R¥* which need to be
assigned values in order to choose a particular model M(a) € M. The models can be linear or nonlinear,
and static or dynamic. They can be expressed as Newtonian equations of motion, in state-space form
or as ARMA models. An example is given later of models appropriate for modal identification.



Ouce the class of models is selected, modelling uncertainties of two general types need to be quantified
by using probability models. The first type, parameter uncertainty, arises simply because the most
appropriate values of the model parameters ¢ to be used to describe the structure’s behavior are un-
certain, that is, it is not known a priori which model in the class of models M is the “best” to describe
the structure’s behavior. The second type of uncertainty, prediction accuracy, arises because modelling
errors lead to an uncertain error in the response predictions given by any model in M. For example, if
the class of linear dynamic models is chosen, then there are uncertainties associated with the values of
the various parameters that need to be chosen, such as Young’s modulus E or the effective moment of
inertia of a cracked concrete member. Furthermore, for any given model in the class, the corresponding
predicted response will differ from the actual structural response because any mathematical model is
only an approximation of the real behaviour of a structure, and uncertain modelling errors lead to
uncertain accuracy for the model’s predictions.

Probability models describing these two Lypes of uncertainties must be set up, then statistical system
identification consists of updating these probability models by applying Bayes Theorem to the structural
data. This involves dealing with the probability of models, which are, of course, not repeatable events,
so the common interpretation of probability as a relative frequency of occurrences of an event in the
long run is not applicable. There is, however, another more useful interpretation of probability as a
multi-valued logic for plausible reasoning under incomplete information. Cox (1961) demonstrated that
to quantify the plausibility of a proposition (statement) denoted by b, based on information expressed
in a proposition denoted by ¢, by using a function P(b|c) € [0, 1], one is led to the usual calculus of
probability merely by the requirement of consistency with classical mathematical logic. From this point
of view, probability is a generalization of classical logic since the latter assumes that the information
available is complete enough to deduce that either ¢ = b (i.e. P(blc) = 1) or that ¢ = not b (i.e.
P(blc) = 0). Jaynes has written a nice introduction to probability as a logic (Jaynes, 1988), as well as
a history of the development of the ideas (Jaynes, 1978).

Bayesian statistical methods using probability logic are built primarily on the earlier work of Laplace
starting in 1774 (e.g. Laplace, 1812), Jeffreys from 1919 (e.g. Jeffreys, 1961), Cox in 1946 (e.g.
Clox, 1961), and Jaynes starting in 1957 (e.g. Jaynes, 1983). Those studying the Bayesian statistical
literature for the first time should be aware, however, that there are two principal lines of thought.
One line is rooted in decision theory and allows subjective probability models as personal expressions
of an individual’s degree of belief {e.g. Bayes, 1763; Ramsey, 1931; De Finetti, 1974; Savage, 1972;
Lindley, 1965). The other line (Laplace-Jeffreys-Cox-Jaynes) stresses that probability models should
be uniquely determined by objective criteria, such as the Principle of Maximum Entropy, once the
incomplete information available has been stated in a suitable explicit form.

Basic Probability Models

The specified class of models M provides a functional relationship between the model output vector
z(n;a) € RM at time ¢, = nAt and the system input ZP = {z(m) € RN :m =1,2,...,n}:

z(n;a) = 2(n; g, 27, M) (1)

The model output x here contains only the model output corresponding to observed response quantities.
For example, if accelerations have been measured then it contains only the accelerations predicted by
the model at the observed DOF. In the following, the dependence of z(n; a) and other model quantities
on the input Z* and the theoretical model M will be suppressed in the notation. Although the model
output is only required at discrete times, the theoretical model which is the underlying basis of the class
M can be in any form, such as a system of continuous-time differential equations. The assumption of
discrete-time input is not critical but is typical of the data usually available.

The first step to imbed the deterministic class of models M iu a class of probability models is to define



the prediction error e(n;a) € RN> as the difference between the model output and the system output,
so that if y(n) € RN denotes the system output which would be measured at time ¢, then:

y(n) = z(n;a) + e(n; a) (2)

For technical reasons, y is the system output which would be measured. The prediction error is,
therefore, actually a combined effect of measurement noise and model error. For modern instrumentation
measuring structural response, however, the measurement noise is usually negligible compared with the
model error, and so prediction of the system output which would be measured is essentially equivalent
to predicting the actual system output.

In order to describe the uncertainty in the prediction error, a class of probability models P is chosen,
parameterized by the prediction-error parameters ¢ € RNe, which prescribes a function hpy giving the
PDF (probability density function) of a sequence of M prediction errors for arbitrary M, that is,

p(EY(a) | o, P) = hu(e(1;a),...,e(M;a);0) (3)

where EM(a) denotes the proposition: “For model M(a) in M, the sequence of the first M predic-
tion errors take on the values e(n;a),n = 1,...,M,” while g,P on the left side of this equation
denote the proposition: “The probability model for these M prediction errors is given by the function
hule(1sa),...,e(M;a); o) in the class P.” A similar interpretation will be used for other PDFs.

The selection of the classes M and P allows a class of probability models Mp to be defined, parame-
terized by o = [a7,a”]T € S(a) C RN~ where N, = N, + N,, which prescribes a function fu giving
the PDF for the system output sequence Y;¥ = {y(n) € RN :n =1,2,... ., M}:

p(YM @, 2 Mp) = fuly(1),...,y(M); e, Z})
= hu(y(l) - z(1;0),...,y(M) — z(M; a); 0) (4)
where fas is determined by using equation (2) in equation (3). In order to account for the uncertainty

in the values for the parameters @, the specification of Mp also involves choosing an initial {“prior”)
PDF m(q) over the set S(a) of possible parameter values, that is:

pla | Mp) = m(a) (5)
The choice for m(a) allows engineering judgement about the plausibilities of the different models to be
incorporated. It would typically be chosen as a smooth slowly-varying PDF which is mathematically
convenient and roughly reflects the user’s judgement. Alternatively, the initial PDF can be chosen
by Principle of Maximum Entropy if the information which is desired to be utilized can be explicitly
expressed as “testable” information (Jaynes, 1968). Dependence of the initial PDF on the input ZM
can be introduced in equation (5). For example, this might be done when using linear models in order
to account for the fact that the nonlinearities in structures typically cause them to become more flexible
for stronger excitation, although the final results are often insensitive to the choice of the initial PDF.

Summarizing, specification of the class Mp implies specification of two PDFs which are the basic
probability models for system identification: fu for the system output, which relates to the uncertainty
in the prediction accuracy of the models in M, and 7 for the model parameters @ and g, which relates
to the uncertainty in the deterministic models in M and the prediction-error probability models in P.

Initial and Updated Predictive Probability Models

The PDF in equation (4) gives predictions for the system output for a particular probability model in
class Mp which is specified by the value of the deterministic model and prediction-error parameters a.



Prior to utilizing data, the best choice for making predictions of the system output using the assumed
class of probability models is the initial predictive PDF:

PO ZE Mp) = [ (M 0,2 M) pla| Mp) da
Sa)

[ u(¥¥0,21) n(0) de (6)

S{a)

which is readily derived from the axioms of probability (the “Total Probability Theorem”). This gives a
predictive PDF using the whole class Mp as a weighted average of the predictive PDFs for each model
in Mp. with weights given by their initial probabilities.

Let Dy denote a set of observed time history data from the structural system at discrete times ¢, =
nAt, where Al is the sampling interval. These data are assumed to consist of the sampled history
ZN¥ = {3(n) € BN :n =1,2,...,N} for N; inputs and the sampled output history YN = {g(n) €
RVe:n =1,2,..., N} which is the measured response at the N, instrumented degrees of freedom of the
structure. For simplicity here, it is assumed that the observed input gives a nearly complete description
of the system input, otherwise a stochastic model of the system input must be constructed to cover
unobserved or “noisy” inputs. For the applications of interest here, the system input consists of the
accelerations induced by an earthquake at “support” degrees of freedom for the structure; the system
output consists of the corresponding accelerations at the N, observed degrees of freedom.

Based on the new information in the data Dy, the predictive PDF in equation (6) can be replaced by
an updated predictive PDF by using the Total Probability Theorem again:

p(Y | DN, 2 Mp) = /1)(1(«%1 | &, Py, Z},1, Mp) pla | Dv, Mp) da
S(w)
= k / p(YN Y 10, 2N, ZM  Mp) p(a | Mp) da
S(a)
=k [tV Ve, 2, 20) wle) do (7)
Sta)

where now the system output is only predicted for the next (M — N) sampling times for a prescribed
future input Z}{, ;, since the output is already specified for the first N samples by Dy. In equation (7),
Bayes Theorem is used to calculate the updated (“posterior”) PDF from the initial PDF:

kp(YN | @, ZN, Mp) pla | Mp)
= kfin(Y{V;a,Z)) n(a) (8)

p(a | Dn, Mp)

Il

where the normalizing constant & can be evaluated using equation (6), since it satisfies:
R =p(VN | 2, Mp) (9)

The updated predictive PDF using the whole class Mp and the data Dy can be viewed as a weighted
average of the predictive PDFs for each model in Mp, like the initial case above, except that now the
weights are given by the updated probabilities for each model.

The difficulty with the solution given in equation (6) for the initial predictive PDF for the system
output is that the multi-dimensional integral can not be evaluated analytically, nor numerically if the
dimension of the parameter space S(a) is too high (say, greater than 5). The situation is even worse
for the numerical integration in equation (7) for the updated predictive PDF, since the function fy
is sharply peaked at one or more locations in S{«) if the number of sampling times N is not small.



An asymptotic approach is presented next, which not only provides approximations for the required
integrals, but also provides insight into the solution which is not revealed by the integrals themselves.

Asymptotic Approximations

Define the optimal parameters & = [@T, QT]T for Mp given data Dy to be values of the parameters a €
S{a) that globally maximize f N()A/]N ;Q, ZN ). The optimal parameters are equivalent to the maximum
likelihood estimates used in “traditional” statistical theory based on the interpretation of probability
as relative frequencies of events in the “long run”. If there is a finite number K of optimal parameters,
then the class of models Mp is said to be systmn identifiable under data Dy (Beck and Katafyglotls
1991). Denote these optimal parameters by ¢'*', £ = 1,..., K. By expanding In fN( N a, ZIN) in a
second-order Taylor series about an optimal parameter g“‘), the following local approximation is derived:

In(VNa, 28) ~ fn(V g, ZN)GXP(—%[Q—QITAN(Q)[Q.—Q]) (10)

where the elements of the N, x N, Hessian matrix An(a) are given by:

a-z]an(}”/]N;g’ Z{V)
aa,-aaj

[AN(Q)]ZJ = - (“)

The elements of Ay are O(N) and, therefore, for a large number N of sampling times, which is usually
the case with measured seismic response, fN( s, Z ) is very peaked at each optimal parameter
&™), Therefore, Laplace’s method for asymptotic expansions can be applied to obtain the following
approximation for the integral in equation (7) (Beck and Katafygiotis, 1996):

K
p(Y¥h | Dns 23, Me) = 3w p(Yi | &9, Dy, ZY40, Mp)[1 + O(N ) (12)

k=1
where
p(f/]N:Y}\]}/{H |Q(k)’Z]Na Z]Qfd-H’MP)
p(le |-C:‘f(k)aZ1N»MP)
fM({/lNaYJ\%lé i*) Z{V»ZIQI/IH)
fN()/] 3_ (k) ZN)

p(Yh, 1a® Dy, Z¥, |, Mp) =

(13)

and the weighting coefficient wy, corresponding to optimal parameter &\*) is given by:

!
W= i, wh = m(a®) | An(a®) [V (14)

Zk}'\=1 w;; ’

The continuous weighted average for the updated predictive PDF in equation (7) is therefore approxi-
mated by a discrete weighted average of the predictive PDFs for each optimal model in class Mp.

Since fn(Y;N;a, ZN) is very peaked at each optimal parameter &, the updated PDF pla | Dy, Mp) is
too if the initial PDF is a smooth and slowly-varying function of a. It can be deduced from equations (8)
and (10) that in this case p(a | Dy, Mp) behaves locally about each optimal parameter & like a multi-
dimensional Gaussian distribution with mean & and an N, x N, covariance matrix Ay'(&). The optimal
models may therefore be interpreted as locally most probable models within the class Mp based on the
data Dy, and the covariance matrix can be nsed to examine how precisely the optimal model parameters
are identified by the data. Furthermore, it can be deduced that the predictive PDF in equation (12) for
each of the optimal models is weighted in proportion to the volume of the updated PDF p(a|Dy, Mp)



under its Gaussian-shaped peak positioned at the corresponding optimal parameter. In fact, a more
accurate version of equation (12) would include all probability models for which p(a|Dy, Mp) has a
local maxinum, but as N increases, the contributions of the optimal models eventually dominate.

Equation (14) shows that for the asymptotic approximation of the updated predictive PDF given by
equation (12), the initial PDF 7(a) is not required over the whole domain S(a). Instead, only the
relative values at the optimal parameters ¢'*) need be specified. This allows engineering judgement to
be incorporated since some of the optimal models based on the data may not be very plausible from an
engineering point of view. If Mp is globally system identifiable under Dy, that is, K = 1 in equation
(14), the initial PDF does not enter at all. This is the well-known Bayesian result that a large amount
of data will overwhelm the effect of the chosen initial PDF and one can proceed using the predictive
PDF for the unique optimal model (Lindley, 1965). The above result shows, however, that this is only
true in the case of global system identifiability.

It is of interest to note that the exact updated predictive PDF in equation (7) does not require parameter
estimation in the usual sense, but that the asymptotic approximation does. The problem is converted
from an integration over all possible probability models in the class Mp, which is computationally
prohibitive when there are more than just a handful of parameters, to a nontrivial optimization problem
which can at least be tackled numerically (Beck and Katafygiotis, 1991; Yang and Beck, 1996). Since
the optimal parameters are also Fisher’s MLEs (maximum likelihood estimates), the well-known MLE
approach to parameter estimation can be justified ir terms of an asymptotic approximation to the
exact Bayesian solution for response predictions, but, in addition, the asymptotic result in equation
(12) shows how to proceed when there are multiple MLEs, while it is not clear how to proceed in this
situation in “traditional” statistics.

Least-Squares Output-Error Method

By making appropriate choices for the class P of prediction-error probability models, various “standard”
methods for system identification can be viewed as special cases of the general Bayesian statistical
framework presented here. For example, least-squares output-error or equation-error methods can be
derived as approximations to the exact Bayesian solutions. Alternatively, recursive procedures can be
formulated if sequential calculation of the most probable model parameters is desired, leading to forms of
the extended Kalman filter (West and Harrison, 1989), which has been applied to system identification
using earthquake records in Beck (1978) and Hoshiya and Saito (1984), for example.

The least-squares output-error approach has been the dominant method for the application of system
identification to measured structural motions, as summarized later. One reason is that, unlike the
least-squares equation-error approach, it can he applied when the observed output of the structure does
not correspond to the complete state vector of the structural model. This situation arises, for example,
in updating finite-element models where the number of model DOF is typically much larger than the
number of observed DOF. The output-error case is therefore examined here. Although least-squares
parameter-estimation methods can be accepted in their own right, by viewing them within the Bayesian
statistical framework one can determine the prediction accuracy of the most probable models, the
precision of the parameter estimates of the structural models and prediction-error probability models,
the updated predictive PDF even when there are multiple optimal models, and a principle of parsimony
for comparing different classes of models on the same data.

Consider a choice for the class P in equation (3) which makes e¢(n;a) a zero-mean stationary Gaussian
white-noise stochastic process with independent components. This is equivalent to a class of probability
models for expressing the engineer’s incomplete knowledge which asserts that knowing the prediction
errors at other times, or at other locations within the structure, does not influence the engineer’s
uncertainty concerning the value of the prediction error at a specified time and location. This choice



for the class P also corresponds to a probability distribution kys in equation (3) which is given by the
Principle of Maximum Entropy under the condition of zero means and finite variances (Jaynes, 1978).
This means that under the latter conditions, hy gives the maximal uncertainty that EM in (3) can
have, just as the uniform distribution gives the maximal uncertainty for an uncertain variable with a
finite range. Therefore, if any other choice for hy is made, there should be strong grounds for the
implied reduction in uncertainty in the predictions.

The basic probability model fas of equation (4) can now be derived as:

fM(Y jQ, ZM ]_I \/_(1 xp( 557 Z yi(n) — z:(n;a))’ )] (15)

g n=1

The prediction-error parameters g are the unknown standard deviations, that is, ¢ = [oy, 02, ..., on,]7.
In the special case where the variances of the prediction errors at all observed DOF (degrees of freedom)
are assumed to be equal, the vector g reduces to a single parameter ¢. The optimal parameters
& = [af, 67T are determined by maximizing fy with respect to o. For fixed model parameters g,

maximizing ln fx( X1 NI O Z1 ~) with respect to the o; leads to:
. 1 & )
5i(a) = & 22 (3i(n) — zilnia)) (16)
n=1

Therefore, in the case of independent variances, the most probable standard deviation 6;(a), for given
model parameters a, is equal to the RMS of the prediction errors at the i observed DOF. In the special
case where all the variances are assumed equal, it can be easily shown that 6(a) is equal to the RMS
of the prediction errors at all observed DOV, that is:

bes v ZZ (n; a))z (17)

i=1 n=1

Obviously, the condition for the overall most probable variance is given by equations (16) or (17) when
a = @ Substituting equations (16) or (17) into equation (15) with M = N:

fn(Y¥;a,8(a), Z2Y) = [eJ (a)] NN/ (18)

where constant ¢ = 27e and J(a) is either the geometric or arithmetic mean of the RMS prediction-errors
a%(a) at the observed DOF, depending on whether independent or equal variances are assumed:

12

No No
J(a) = [H&?(g)} (independent variances)

i=1

No
— [_l_ Zn-f((_l)} = &2(_@) (equal variances) (19)

The optimal structural model parameters & are determined by minimizing J(a) in equation (19), and
the equal-variance case corresponds to the usual least-squares output-error method for estimation of
model parameters. In structural applications, the model output z;(n;a) involved in equation (19) is a
nonlinear function of the parameters, even if the model has linear dynamics, and so the minimization
must be done numerically by an iterative optimization algorithm. As pointed out earlier, there may be
multiple optimal model parameters because .J(a) might attain its minimum at more than one value &
in S(a), the set of permissible values of a. The task of finding all the global minima of the nonconvex
function J(a) is nontrivial. Powerful methods have been developed to treat this problem, however (Beck
and Katafygiotis, 1991; Yang and Beck, 1996). In the independent-variance case, for each optimal model
parameter @ there are unique corresponding optimal prediction-error variances 6? = ¢%(a),7 = 1,..., N,,
given by equation (16) with @ = @. In the case of equal variances, the optimal prediction-error variance



6% = 6%a) = J(a) is uniquely determined even though & may not be, since by definition J(&) is the
global minimum of J(a), and so each optimal structural model has the same prediction-error variance.

For the asymptotic approximation in equation (12), the PDF in equation (13) is now:

No 1 1 M 7 )
Y, | a® Dy, 2L, M — € i(n) — zi(n; a))° 20
P( N+1 Q N+&N 41 P) ,1—[1 ((\/é;(}i)M_N exp [ 295 lzn z]\]:+1(y (n) T (TL a)) )l ( )

The Hessian matrix Ay(d) needed to evaluate the weights in equation (14) is block diagonal with one
block an N,xN, matrix By(&) corresponding to the structural model parameters a, and the other
block matrix Cn(é&) (an N,xN, matrix for independent variances and a scalar for equal variances)
corresponding to the prediction-error parameters o. It can be shown that the determinant of Cn(&(*))
is the same for each optimal parameter &, so the weights depend only on the determinant of By given
by:
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] (independent variances)

] (equal variances) (21)

where 5%(a) and 6%(a) are given by equations (16) and (17) respectively. Because of the block diagonal
structure of the Hessian matrix Ax(&®), the inverse of By(@®)) is the covariance matrix for the
local Gaussian behavior of the updated PDF p(a | Dy, Mp) centered at &) in the structural model
parameter space.

From equations (12) and (20), the mean and variance of the predicted system output y(n) at times
t, >ty are given by:
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Therefore, the mean system output is a weighted sum of the outputs of each optimal structural model
and the variance for the system output is the sumn of the prediction-error variances for each optimal
model, and a contribution due to the lack of uniqueness in these models. If K = 1 (global system
identifiability), the last two terms in the variance expression cancel and the predicted system output is
Gaussian with mean and variance given in equation (22). If K > 1 (local system identifiability), the
asymptotic predictive PDF is not Gaussian, even though each term in the sum in equation (12) is a
Gaussian PDF (see equation (20)).

APPLICATION TO MODAL IDENTIFICATION

Method for Time-Domain Identification

An important application of system identification in structural dynamics is to modal identification where
modal parameters based on a model with linear dynamics are determined using dynamic data from a
structure. For measured seismic response from tall buildings, Beck (1978) and Beck and Jennings
(1980) showed that this can be done in the time domain, without the need to develop a structural
model involving mass, stiffness and damping matrices. Beck extended the methodology to multiple
inputs and implemented it in a computer program MODE-ID, in order to find the modal parameters



from seismic motions recorded on a bridge (Werner et al, 1987). MODE-ID is based on the least-squares
output-error method described earlier, together with a class of models defined as follows.

Structural motion at the N, observed DOF is modelled as a superposition of N,, dominant modes:
()= xp(t), i=1,...,N, (23)

The model for the (N,, — 1) dynamic modes of vibration is an accurate discrete approximation (Beck
and Dowling, 1988) of the well-known equation of motion:
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One pseudostatic “mode” is also necessary:

Ny
Folt) = Y raefu(t) (25)
k=1

This accounts for the quasi-static contributions to the structural motions induced by the support mo-
tions during the earthquake, ignoring inertial and damping effects since these are accounted for in the
dynamic response contributions (Werner ¢/ al, 1987). The simplest pseudostatic mode is rigid-body
motion as in the direct effects of rocking and translation of the base of a building. In the governing
equations, {fx(t) : k = 1,..., N1} are linearly independent support accelerations defining the seismic
input to the structure, but they could also be exciting forces. An extension of the result proved by
Beck (1978) shows that the class of models is globally identifiable, at least if the measurement noise
and model error are not too large.

The model parameters a defining the class of models are the modal parameters for each of the identified
(N, — 1) dynamic modes, that is, the natural frequencies and damping ratios, w, and {,, the initial
modal displacement and velocity, ¢, and d., the modeshape components {¢;,,z = 1,...,N,}, and the
input participation factors {p,k,k = 1,....N;}; together with the pseudostatic influence coefficients
{ricvi=1,...,No, k=1,...,N;}. The latter parameters may be fixed on a theoretical basis in some
situations (e.g. for the pseudostatic response due to rocking and translation of the base of a building).
Only the modeshape components at the observed DOF can be identified since the “missing” modeshape
components at the unobserved DOF cannot be identified directly without introducing a structural model
as a basis for the “interpolation”.

Typically, the system output which gets least-squares matched by the model output during the parame-
ter estimation stage (equations (17) and (19)) consists of measured accelerations at N, =10 to 20 DOF.
The optimization algorithm used in the MODE-ID program is a robust one exploiting the linearity of
the model dynamics (Beck, 1978; Werner ¢f al, 1987). Although MODE-ID does the output matching
in the time domain, it is also possible to use the frequency domain by matching the complex Fourier
transforms of the system and model outputs (McVerry, 1980). The theory in the previous section still
applies because the time-domain J(¢) in equation (19) is essentially equivalent to the frequency-domain
version by Parseval’s identity.

The above uncoupled equations of motion assume classical normal modes of vibration. The method
has been extended recently to a model with non-classical modes of vibration (Tan and Cheng, 1993).
[t should be noted, however, that the linear dynamics forming the basis of these models assumes that
the structural damping is linear viscous damping. This is known to be a poor model of structural
damping, which in tests on members and components exhibits a rate-independent hysteretic behavior,
even at small deformation amplitudes. Still, at amplitude levels where there is no damage and no
substantial yielding, so that the damping is small, the application of modal identification to seismic



response data has demonstrated that the simple classical linear viscous damping model is an acceptable
approximation.

Previous Applications to Seismic Structural Response

The modal identification methodology described above has been one of the few system identification
techniques applied to recorded seismic response, and a significant number of structures of different
types have been studied by several researchers. Most of the data studied were recorded in tall buildings
during earthquakes in California (Beck, 1978; Beck and Jennings, 1980; McVerry, 1980; McVerry and
Beck, 1983; Papageorgiou and Lin, 1989a,b; Li and Mau, 1991; Nisar et al, 1992; Hashimoto et al, 1993;
Durrani et al, 1994; Mau and Aruna, 1994). These studies confirm that a small number of “linear” modes
(5 to 10), can capture the translational and torsional behavior of tall buildings during earthquakes. For
nondamaging response, identified modal periods are typically within 10 % to 15 % of the corresponding
values calculated from theoretical (finite-element) models. These periods differ from values given by
simple code-based formulas by much larger amounts, and they greatly exceed the periods identified
from small-amplitude ambient vibration tests. For nondamaging response, identified equivalent viscous
damping ratios for each mode are typically in the range 3 % to 8 % of critical damping,.

This summary of results refers to equivalent linear modal parameters for a “time-invariant” model of
a structure where the entire duration of recorded earthquake motions is used. In addition, the time
variation of these parameters can be studicd by using smaller time windows of data of duration two
fundamental periods or more (Beck, 1978). This procedure can provide insight into the extent and
nature of the nonlinearities in the structural behavior. In particular, many of the above studies have
shown that substantial stiffness losses of the order of 50 % or more can occur as the strong-motion
amplitudes build up during the earthquake, even if the structure is undamaged and has not undergone
significant plastic yielding. This stiffness loss may be due to one or more sources: micro-cracking of
concrete, loosening of connections between nonstructural components and the principal structural load-
carrying system, changes in boundary conditions such as softening in the soil foundations, and other
effects. Most of the stiffness loss is recovered as the motion dies out. Studies to localize these stiffness
losses are of much interest but appear to require more dense instrumentation arrays than the 10 to 20
or so accelerometers that are typically distributed over buildings at present.

The most probable prediction-error standard deviations, given by the square root of the global minimum
of J(a) in (19), range from about 15 % to 70 % of the RMS of the measured accelerations, with the low
end corresponding to small nondamaging seismic motions and the high end corresponding to damaging
response where “time-invariant” linear dynamic models do not capture well the enormous changes in
stiffness that occur. A better class of models could be developed which include a dependence of the
prediction-error variance on the strength of shaking. Identification of such models has become more
practical in the last few years, since data for different strengths of shaking have been recorded in the
same structure in several cases. For example, some buildings in San Jose, California, have had their
motion measured during three earthquakes which produced substantially different lateral peak roof
accelerations; in one case, the range was from 8 % to 38 % g (e.g. Nisar et al, 1992).

The modal identification approach has also been used to determine the level of earthquake-induced
forces, base shears, overturning moments and deformations compared with code design values. This
is done by producing complete modeshapes from the identified components through some form of
simple “interpolation”; for example, fitting a curve through the known floor modeshape components
to estimate the components at the uninstrumented floors (e.g. Nisar et al, 1992). A conventional
modal time-history analysis can then be performed because a complete set of modal parameters is
available for those modes contributing significantly to the seismic response. These studies have shown
that earthquake-induced base shears and overturning moments can exceed design levels by factors of
2 to 3 without any structural damage, confirmng that structures designed to code levels often have



considerable “overstrength”. The same studies of undamaged buildings confirm that the interstory
drift ratios correlate better with observed seismic performance since the earthquake-induced drift ratios
were no more than a few tenths of a percent, even when one building experienced a lateral peak roof
acceleration of 38% g during the 1989 Loma Prieta earthquake in California (Nisar et al, 1992). The
same type of system identification analyses have yet to be published for the few buildings that have
been instrumented and suffered structural damage during an earthquake (e.g. CDMG/CSMIP station
number 24386, a 7-story reinforced-concrete hotel in Van Nuys which suffered severe shear damage in
some of the columns during the 1994 Northridge earthquake in California). A “time-varying” modal
mode] based on identification using a moving time window would be more appropriate in these cases.

The modal identification methodology has also been applied to recorded seismic response from a highway
bridge (Werner et al, 1987) and an off-shore oil platform (Mason et al, 1989). These studies have
shown the levels of structural damping exhibited during strong shaking. This type of information is
valuable since it cannot be derived on theoretical basis. In addition, to examine the nonlinear effects
of the earth embankments on the response of the highway bridge, quick-release (snap-back) tests were
performed and the identified modal parameters were compared with those identified from much stronger
earthquake motions (Werner et al, 1990, 1994). This study showed that softening of the earth approach
embankments at large amplitudes has a significant effect on the dynamics of the bridge, which should
be considered during design.

APPLICATION TO STRUCTURAL MODEL UPDATING

Over the last decade, the challenging problem of structural model updating has gained much interest as
finite-element modelling capabilities and modal testing have become more mature areas of structural
dynamics; see, for example, the survey articles by Natke (1988) and Mottershead and Friswell (1993).
The motivation to solve the model updating problem comes from the desire to reconcile a theoretically-
based finite-element model of a structure with dynamic test data from the structure, since there is never
complete agreement between these. Usually linearity is assumed and the reconciliation is done by ad-
justing the finite-element model so that either the calculated response time histories, frequency response
functions or modal parameters “best” match the corresponding quantities measured or identified from
the test data. This is therefore a system identification problem. There is, however, no well-accepted
solution to the model updating problem and this is primarily because of an inherent difficulty: there
is a mismatch between the level of information in the detailed theoretical finite-element model, which
is of uncertain accuracy, and the sparse information in the “incomplete” set of “noisy” test data. This
produces an ill-conditioned and often nonunique inverse problem in updating the theoretical model.

This nonuniqueness problem is particularly acute in model updating using measured seismic response
because of the low density of sensors typical of seismic instrumentation arrays installed on structures. In
fact, this application is only in the early stages of development, and there are apparently no applications
to actual earthquake data. 1t is important, however, because it offers a systematic way of determining
and correcting the weaknesses in a finite-element model of a structure so that more accurate and
complete response predictions can be made. Also, once a finite-element model has been “calibrated” for
a structure using earthquake or dynamic test data, updating the stiffness matrix with subsequent data
provides a tool for rapidly detecting, locating and assessing structural damage. For this application, it
is assumed that local loss of stiffness corresponds to damage at the location. If a viable technology with
this capability had been installed in buildings at the time of the 1994 Northridge earthquake, along
with near real-time data retrieval, it would not have taken several weeks to detect the serious problem
of failed connections in many steel-frame buildings (SAC, 1995).

An important feature of the general Bayesian statistical framework for system identification presented
here is that it can deal with a class of models which are not globally identifiable, and so it can deal with
the nonuniqueness in model updating; at least if there is sufficient data to produce system identifiability,



that is, to produce only a finite number of optimal models. Beck and Katafygiotis (1991, 1992) have
used the methodology to investigate the model-updating problem for substructured linear finite-element
models, although only with simulated dynamic data. They showed how to find all the optimal models
consistent with the data and how to use the asymptotic approach described here to make statistical
predictions of the structural response based on all of these models. An example they give is briefly
described here.

Consider a planar-frame building of N stories which is modelled as a “shear” building with N unknown
interstory stiffnesses but known mass distribution. If the horizontal seismic motion is measured at the
base and at the roof only, Udwadia (1985) showed that the inverse problem of estimating the model
stiffnesses from these data is nonunique and he proved that N!is an upper bound on the number of
solutions. Beck and Katafygiotis (1991) presented a new algorithm to find all the stiffness solutions.
They showed that for a uniform six-story building, for example, there are a total of eight stiffness
solutions (optimal models) which give identical response at the roof for any base excitation. Each
model, however, gives distinct predictions at the lower floors where, by assumption, the motion was
not measured. Beck and Katafygiotis (1992) calculated the weighting coefficients in equation (14) for
this example and showed how they were influenced by the choice of the initial PDF 7(a) in equation
(5), which was chosen with the damage detection application in mind. They showed that despite the
multiple optimal models, the probability of damage (decreased stiffness) could be computed and used to
assess where damage had occurred. The example is an idealized one, but it does serve to demonstrate
the usefulness of the general framework presented here.

CONCLUSION

A unified Bayesian statistical framework is described for system identification which can be used to
extract important information for earthquake-resistant design from the measured seismic response of
structures. In this approach, the “best” (optimal) models within a chosen class of models are those
which are locally most probable based on the available data. Prediction using only these optimal models
is asymptotically correct for large samples compared with the full Bayesian predictive solution for the
class of models. In the case of multiple optimal models, response predictions are given by a weighted
average of the predictive probability models corresponding to each such model. The methodology allows
a more comprehensive interpretation of the least-squares output-error approach to system identification
which is the dominant method for modal identification from measured seismic response. In particular,
it allows the uncertain prediction accuracy of the identified models to be quantified. It can also handle
the nonuniqueness expected in updating a finite-element model using measured seismic response.
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