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ABSTRACT

This paper presents the free vibration analysis of stiffened coupled shear walls based on a discrete-
continuous approach. The effect of the stiffening beam on the free vibration characteristics of the structure
is investigated. The optimal position for the stiffening beam to increase as far as possible the first natural
frequency of vibration is also presented.
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INTRODUCTION

Coupled shear walls are widely used in tall building systems to provide lateral resistance against external
horizontal loads arising from wind or earthquakes. In the earlier papers (Choo and Coull, 1984, Chan and
Kuang, 1989), it has been shown that the efficiency of coupled structural walls could under certain
circumstances be increased significantly by the addition of a stiffer beam or a rigid truss at the top or some
level of the structure. This induces additional axial forces, and thus reduces the bending moments in the
walls as well as helping to reduce the lateral deflection of the structures.

In this paper, free vibration analysis of stiffened coupled shear walls is presented using a discrete-
continuous approach (Li and Choo, 1995). The effect of the stiffening beam on the natural frequency
characteristics of the structure is investigated. The optimal position for the stiffening beam, to increase as
far as possible the first natural frequency of vibration, is also presented.

ANALYSIS



Free vibration analysis of coupled shear walls can be carried out by various methods, such as discrete finite
element method and continuous approaches. FEM analysis may involve considerable data preparation
effort and computing time; continuous approaches could require solving a high-order differential equation,
to which a closed form solution is not obtainable. The mathematical difficulty involved in the continuous
approaches can be overcome by employing techniques based on the Galerkin method of weighted residuals
(Mukherjee and Coull, 1973) for approximate solutions. However, it is very hard to estimate the inherent
errors of the continuous methods arising from the approximation process of the natural frequency
calculations. The discrete-continuous (Li and Choo, 1995) approach overcomes the above-mentioned
shortcomings and combines the advantages of both discrete and continuous approaches.

Consider a coupled shear wall system with a stiffening beam at level x, as shown in Fig. 1a. To obtain the
mass matrix, the structure is considered as a discrete lumped mass system (Fig. 1b). It is assumed that the

mass of the stiffened coupled shear walls may be replaced by a number of lumped masses evenly located
along the structural height. The lumped-mass matrix M of this equivalent system is

M = diag[m,, m,, ..., m,] (1

and the values of m; can be determined by

m, = —1—MT and m, = lMT for i>1 2)
2n n
where m, (i=1, 2, ..., n) are the lumped masses at different location throughout the structural height; n is

the number of the lumped masses, and M, the total mass of the structure.
The stiffness matrix K of the system can be obtained by inverting the flexibility matrix,
K=F" 3)

In the flexibility matrix F for the stiffened coupled shear walls, the values of the ith column elements
represent the lateral deflections of the walls at all levels where lumped masses are located, induced by a unit
load applied horizontally at the location of the ith lumped mass. Consider the stiffened coupled shear walls
as a continuous system as shown in Fig. 1c, based on which the lateral deflections can be conveniently
analyzed. The entire flexibility matrix of the structure may be formed by repeating the static analysis for a
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unit lateral load on the walls at each and every level for which there is an assumed lumped mass.

After obtaining both the mass and stiffness matrices, the free vibration analysis of the stiffened coupled
shear walls can be conducted by solving the following standard eigenvalue equation,

{K - 0®M}{u} = {0} 4
where  and {u} are circular frequency and deflection vector of vibration, respectively, of the structure.

It is obvious that the key aspect of the method is the derivation of the lateral deflections for stiffened
coupled shear walls subjected to a unit horizontal load at an arbitrary level.

LATERAL DEFLECTIONS

Consider a coupled shear wall system with a stiffening beam at level x, subjected to a unit lateral load at
level H, (Fig. Ic). By employing the continuum approach of analysis, the coupling beams above and
below the stiffening beam may be replaced by a continuous distribution of laminae with equivalent
stiffness. It is assumed that the points of contraflexure of the lintel beams coincide with the centerline of
the laminae. A cut is made along the line of contraflexure as shown in Fig. 2, and a continuous distribution
of shear force along the cut will be released. Let g denote the shear flow per unit height, the compatibility
consideration of the vertical displacements above and below the stiffening beam requires that

dy hb? 1{1 [ ]
12 _ = Tdx+| T,dx|=0 5
dx  12EL 7" E(A A, ) I, A 2)
3
(D _hb L, J-de 0 (5b)
dx  126L T E\a A2

where y_, g,, T, and y,, g,, T, are the lateral deflection, the laminar shear and the axial force in the walls
above and below level x, respectively.

The moment-curvature relationships of the walls are

2
M8=E1d Yo 4 IT, for x>x, and M, =42
dx* dx?

2 +IT, for x < x, (6)

where I = I, + I,, and M, is the external bending moment due to the unit lateral load, given by
M, =0 for x> H, and M,=H,-x for x<H, )]
The axial forces 7, and 7, in the walls are given respectively by

T, = Landx and T, = LH q,dx+V_+ J‘:l q,dx (8)

where V, is the shear force in the stiffening beam.

Considering the compatibility at the point of contraflexure of the stiffening beam
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and by equating the corresponding terms of egs. (5a) and (5b) at x = x,, the shear force in the stiffening
beam can be represented by

v, =8,Hq,(x,)=S,Hq,(x,) (10)

where q,,(xl) and q,,(xl) are the laminar shear flows at x = x,, and §,, is the relative flexural rigidity of the
stiffening beam given by

Em Im

" = EI, H/h an

in which H/h may be considered as the number of stories.

The laminar shear flow intensity g and the axial force T are related by

dT
=& 12
q / (12)

Differentiating eq. (5) and combining eqs. (6) and (12) to eliminate the variables y and g yields the
governing differential equations for the axial force T

d’T, d’T,

dx; -o’T,=—yM, and o', =-YM, (13)
where Y= 1213”1 o’ =v|l+ Al A=A +A,
b1 AAL

For H, 2 x,, the complete solutions to eq. (13) are as follows,

T, = B, coshow+C, sinhoxx T, = B, coshow + C, sinh ox +%(H,, ~x) (14a)

T, = B, coshaix + C, sinh(x.x+%(Hp -x) (14b)

where the subscripts 1 and 2 denote the positions above and below level H,, respectively.

The corresponding expressions for the laminar shear above and below the position of the stiffening beam
can then be derived by using eq. (12), and are given by

g, =— 0B, sinhox+C, coshox) g, =~ oc(B2 sinh 0w + C, cosh ox — %) (152)

7, =—oc(B3 sinhou + C, coshoux—%) (15b)

The values of the integration constants B,, C,, B,, C,, B; and C, can be determined by considering the
following boundary conditions,



7,(0)=0 qal(Hp)zqaz(Hp) qaz(x1)=4b(x1) (16a)
T,(H)=0 T.(H,)="T.(H,) T, (%) +V, =T,(x,) (16b)

Substituting egs. (14) and (15) into eq. (16) yields
B, = - C, tanhoH B, = B, —C,sinhaH, B, =u,B, +1,C, (17a)

C,=C,-C,coshaH, C,=p,C, c,=—1 (17b)

For H, < x,, the complete solutions to eq. (13) are as follows,

T, = B, coshowx + C, sinh oux (18a)

T, = B cosho+ Csinhox T, = B, cosh aux + C, sinh o + %(Hp ~x) (18b)

The corresponding expressions for the laminar shear above and below the position of the stiffening beam
can then be derived by using eq. (12), and are given by

g, = - 0B, sinh o + C, cosh owx) (192)

s =— 0(Bssinhox + Cscoshox) gy, =— OL(B6 sinh o + C, cosh otx — %) (19b)

The values of the integration constants B,, C,, B;, Cs, B, and C; can be determined by considering the
following boundary conditions,

qb2(0)=0 qbZ(Hp)=qbl(Hp) le(xl)'_'qa(xl) (20a)
T,(H)=0 T,,(H,)=T,(H,) T,(x,)+V, =T,(x,) (20b)

Substituting egs. (28) and (29) into eq. (20) yields

B, =— C, tanhaH B, =¢,B, -¢,C, B, =B, - C, sinh o, 1)
C, =¢,C; C; = Cy(1-coshoH,) C, =% (22)

The factors W, to |, and €, to €, are as follows:

B cosh o, — sinh 0w, tanh oux; e = sech oux,
Hh S, 0 sinh oux; + coshowx, —sinh 0w, tanh ou, ! S,,0H sinh ox; + sech oux,
_ S, 0H(1 - coshoux, ) . - S, 0H cosh oux,
Ha = S, O0H sinh otx, + cosh o, —sinh ow; tanh 0w, > 8, 0Hsinh owx; + sech oux,
1-¢, tanh
1L, =1+[;,L2 —(u, —l)sinhoch]tzmhoaxl €, 2 1A O,

" 1+ tanhaH(e, — 1) tanh ox,
_ Wy +(, —1)coshaH, tanh oM tanhox,
- 1+ tanh oH (pr, —1)tanh ow,
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After determining the axial forces, the lateral deflections of the walls above and below the position of the
stiffening beam can be derived by integrating eq. (6) twice.

For H, 2 x,, the expressions of the lateral deflections are

H2
yﬂ:%[( 0‘{’)(3,6 H,)=2 —é(Blcoshonx+Clsinhoz.x)+D1x+F;] (H,<x<H) (23
1 Yl x* 1 . <
ya2=E o (3H - )?—?(Bzcoshowc+C2smhov.x)+D2x+F2 (xl__xSHp) (23b)
2
yb=%[( ;(l)(w - )%—-of—z(&coshocx+C3sinhocx)+D3x+Ig] (0<x<x,) (23c)

The integration constants D,, F, D,, F,, D, and F; can be determined by satisfying the following
compatibility requirements,

¥,(0)=0 Yo%) = Yar (x:) ya2(Hp)=yal(Hp) (24a)
y:(0)=0 o(x)=via(x) o (H,)=yu(H,) (24b)
This results in
D, = é—[(Bl — B,)sinhoH,, +(C, - C,)coshaH,, |+ D, (25)
D, = é[(B2 — B;)sinha, +(C, — C, )cosh o, |+ D, (26)
p,=Lc, 27)
o
= %[(B1 - B,)coshaH, +(C, —C,)sinhoH, |+ (D, - D,)H, +F, (28)
F, = é[(B2 ~ B;)coshow, +(C, - C;)sinhax, |+(D, - D, )x, + F, (29)
!
F,=— B, (30)
o

For H, < x;, the expressions of the lateral deflections are

H2
ya=é[( (Z’)(g,x H) p —é(B‘tcosha.x+C4sinh0(x)+D4x+F;:| (x, Sx<H) (3la)

HZ
yM:_l__[( Yl)(g.x H,)=2 —alT(B5coshocx+C5sinhwc)+D5x+F5:|(H <x<x) (b

EI o? P

1 Yl x?
yb2=E[(l - J(SH —x)—é——— 2(B cosh oux + Cj; sinh 0w )+ D x+F] (OSxSHp) (3lc)

The integration constants D,, F,, Dy, F;, D, and F;, can be determined by satisfying the following
compatibility requirements,

A4Y) (0) =0 Y2 (Hp) = ¥Yn (Hp) Yn (xl ) =Y (xl) (32a)



¥5,(0)=0 yo(H,)=yn(H,) Yo (%) =yi(x,) (32b)

This results in

l

D, = a[(B4 — B;)sinhowx, +(C, — C; )cosh aux, ]+ D, (33)

D, = é[(BS ~ B,)sinh o, +(C; - C; JcoshaH, | + D, (34)
l

D, =EC6 (35)

F, = ?.57[(34 — Bs)coshaux, +(C, — C;)sinhoux, ] +(Ds =D, )x + F (36)

F, = OLLZ[(B5 — B;)coshaH, +(C; — CG)SinhOCH,,]+ (Ds—Ds)H, + F, 37
{

F, = ?Bﬁ (38)

NUMERICAL INVESTIGATION AND CONCLUSIONS
To illustrate the effect of a stiffening beam on the dynamic characteristics of coupled shear walls, a typical
structure is analyzed as an example. The dimensions and structural properties are given in Table 1, and the

first ten natural frequencies of vibration are presented in Table 2.

Table 1. Dimensions and Properties of the example structure

wall section: 0.3 %X 6m A=A,=18m*> [ =I, =54m*
coupling beam section: 03x0.3 A, =0.09m> I, =0.000675m"
stiffening beam section: 03x15 x,/H=0.5 I, =0.084375m*
H=95m h=38m b=2m I=8m

p =2400kg/m’ E=E, =2.76x10" kN/m’

Table 2. Natural frequencies of the example structure

structural mode number
form 1 2 3 4 5 6 7 8 9 10
N* (fi,) 0.6675 2.925 7.159 1328 2144 31.61 43.82 58.04 7430 9257
S* (/1) 07632 2926 8.120 13.29 2246 31.61 45.14 58.04 7554 92.57
* N and S denote normal coupled shear walls and stiffened coupled shear walls, respectively.

Figure 3 shows the effect of the stiffening beam on the free vibration characteristics of the structure. It can
be seen that the addition of a stiffening beam can increase significantly the first natural frequency of
vibration. The increase rate could reach 30% in some circumstances. Figure 4 presents the optimal
positions for the stiffening beam to increase as far as possible the first natural frequency of vibration for
different values of S,. It is obvious that the optimal position is at level between 0.4 and 0.5 of the

structural height, depending on the degree of coupling of the structure, o, and the stiffness of the
stiffening beam, §,,. This position is essentially the same as that required to minimize the lateral drift,

since the first mode of vibration corresponds closely to the static deflected form of the structure.
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