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ABSTRACT

The seismic response of concrete dams under severe ground motion is presented using Damage Mechanics
Theory to simulate cracking of the concrete. Two time-marching algorithms are compared, the HHT-o and
the modified Rosenbrock. Both algorithms are stable and control the undesirable high frequency response.
However, the second algorithm produces less error when computing the global energy balance.

KEYWORDS

Concrete dams, Damage mechanics, Time integration, Seismic response.
INTRODUCTION

Concrete dams are designed to resist two levels of earthquakes: A design base earthquake (DBE), where the
dam is expected to remain in the elastic range, and a maximum credible earthquake (MCE) where cracking
and structural damage is expected as long as the reservoir is contained. Considerable work has been
performed in the linear range on concrete dams. However, for the last twenty years significant effort has been
invested in the numerical modelling of cracks for unreinforced concrete with emphasis on dam applications.
In this paper the seismic response including cracking is presented using Damage Mechanics Theory (Ghrib
and Tinawi, 1995), coupled with nonlinear fracture mechanics concepts. This is based on changes in the
constitutive laws governing the concrete rather than creating a discontinuity in the continuum and resorting
to remeshing techniques for the simulation of the crack propagation.

When using the local approach in fracture, the problem of mesh objectivity arises. The mesh-dependant
hardening modulus results in the introduction of a length scale in the constitutive law. For large structures,
this technique offers acceptable results regarding crack orientation and fracture energy dissipation under static
loads. The proposed model appears to be particularly suited to include some other material formulations and
presents reasonable expectations for the nonlinear seismic analysis of dams.

Unreinforced concrete dams exhibit softening and a decrease in stiffness when subjected to strong
earthquakes. In particular, the strain softening is directly related to the tensile fracture of the concrete.
Therefore, implicit time integration algorithms are often preferred to explicit methods because they exhibit
favourable stability conditions in a nonlinear response. While for linear systems, stability conditions can be



established analytically, the optimum time-marching algorithm is not always obvious for nonlinear systems.
Often extensive numerical comparisons are performed to appreciate the characteristics of the algorithm to be
used.

When evaluating the nonlinear dynamic response with an implicit time-marching algorithm, an iterative process
is required to achieve convergence. In the presence of severe strain softening, Newton-type algorithms exhibit
difficulties in converging. In addition, the closing-opening of the cracks induce high frequency shock waves
which, if they are not annihilated rapidly, affect the stress history and the solution tends to diverge.

In this paper, two numerical algorithms are compared: the Hilber-Hughes-Taylor (1977) method (HHT-o)
and the modified Rosenbrock (Piché, 1995). Koyna dam is used for calibration purposes in this study. Focus
is placed on the convergence criteria of the two schemes and the stability of the results is controlled by the
energy balance in the system.

DAMAGE MODEL FOR CONCRETE

The concept of damage assumes that the material degradation is induced by microcracks which leads to a
reduction of the net area capable of supporting stresses. The loss of rigidity follows, as a consequence of
microcracks, in defining a fictitious undamaged material in relation to the damaged one through the concept
of energy equivalence. The strain energy in the damaged material W, and the elastic strain energy in the
equivalent undamaged material W, provide a possible definition of the damage variable d such that:
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Fig. 1. Damage mechanics model.

If the material is in the elastic range, W, = W, and therefore d=0. After complete cracking, no energy can be
stored in the material, hence W, = 0 and consequently d = 1 which implies total loss of rigidity (see Fig. 1).

The fracture energy of the concrete is defined as:
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where 1, is the characteristic length related to the finite element size. If an exponential-like strain softening
curve is adopted, the damage parameter can be expressed as
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When the strain is increasing the damage will also increase. During cycling loading, the unloading path is a
function of d and under compression the material recovers its initial stiffness. This model presented by Ghrib
and Tinawi (1995) has the advantage of requiring only three parameters: the elastic modulus E,, the tensile
strength of concrete f, and its fracture energy G;.

IMPLICIT TIME INTEGRATION ALGORITHMS

In selecting a time marching algorithm, Hilber and Hughes (1978) provide the following attributes that a
method should posses: (i) at least second-order accuracy; (ii) unconditionally stable for linear systems;
(iii) contollable algorithmic damping in the higher frequency modes; (iv) self starting; and (v) no more than
one set of an implicit system of equations should have to be solved at each step.

Numerous algorithms have been developed to satisfy these criteria. The main difference between these
algorithms is the technique to control algorithmic damping. Numerical damping, for high-frequency control,
is desired since a time-marching algorithm is used within a Finite Element context. This high frequency
response is an artifact of the spacial discretization process and not representative of the behaviour of the
governing equations. It is therefore desirable to remove the participation of the high-frequency mode
components.

For nonlinear analysis and especially for problems dominated by strain-softening, removing or at least
controlling the high frequency modes is necessary to achieve convergence. In these cases when fracture is
simulated by continuum models, "weak" zones will develop, which are characterized by zero stiffness, whereas
the undamaged material retains its initial stiffness. As a consequence, the natural periods of the model may
differ significantly. For such situations, spurious oscillations would enter into the constitutive model and affect
the computed response.

As pointed out by Hulbert (1991), ideally any high-frequency mode should be eliminated after one step, which
is referred to as asymptotic annihilation of these components. The methods which possess this property are
called L-stable.

Most of the popular time-marching scheme used for dynamic analysis of structures introduce a parameter to
incorporate some amount of “algorithmic damping”. In this paper two algorithms are compared based on the
analysis of a full scale gravity dam subjected to an earthquake: (i) the HHT-a of Hilber Hughes and Taylor
(1977); and (ii) modified Rosenbrock algorithm (Piché 1994). They are briefly summarised below.

HHT-o method

The equations of motion of a discretized structure is written in the following form :
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where [M] and [C] are the mass and damping matrices, {r} is the nodal restoring force and {f} is the external
force excitation. To solve equation (5), the Newmark scheme is used. The displacement {u,,,} and the velocity
{vi.1} are given in terms of the acceleration {a,,, } such that:

i+1 y + dtv; + dtz[ (%_B)ai * ﬁam]

u
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a, P and y are parameters that govern the numerical properties of the algorithm ( € [ -1/3, 0], B= (1-o)¥/4
and y= (' 1- 2a)/2). The solution process for nonlinear problems using HHT-a scheme is based on Newton
type algorithms. The implementation in conjunction with a damage model is described elsewhere (Ghrib and
Tinawi, 1995). ;

Modi rock algorithm

A two-stage time step marching algorithm adapted from a modified Rosenbrock technique to solve dynamic
structural problems was presented recently (Piché 1995). This method is L-stable and has a second-order
accuracy with a small relative phase error compared to the average acceleration scheme. Its time marching
scheme is presented in an algorithmic format (Piché 1995).

The dynamic equation is written in the following form :

M]{at)} + (R™(vu)} = {f®)} Q)

where t is time, [M] is the mass matrix and {f{(t)} is the exciting force and {R™ } is the internal forces in the
structures which for linear problems is equal to [C]{v} + [K]{u}. For nonlinear behaviour, including damage,
the internal forces will depend on the damage variable d. Let y be a constant equal to (1 - 1/v/2), to move
from a time step i to i+1, the algorithm has five steps :

1. Evaluate the vectors  {Vf} = {f,, }- {f } and {r;}= {Riﬂt (vi,w)}
2, If necessary, form the stiffness and damping matrices [K] and [C]
Form the “equivalent mass matrix” [M*] = [M] + dty[C] + dt’y % [K]
3. First stage
Solve the linear system
[M*){€} = dt [{ £ }- {ro} + Y{V} - ydt[K{vi} ]
Compute the vector  {ii} =dt ({v;} + Y{€})
4, Second stage
Form the vectors
{f,}={f(t;,+0.5dt)},
{r,}={R™(v,+0.5&,u;+0.50 )}
Solve the linear system
[M*1{6v} =dt[ {f,} - {r,} +dty(2y -1/2)[K]{&} +y [CI{&} ]
Compute the vector {du} =dt ({v;}+ (0.5 -y) {e€}+y{dv})
S. Move the solution a step forward
{uin1} = {u;} + {Su}
{vi} ={vi} + {3v}

The main difference between this algorithm and the classical methods used lies in the evaluation of du and év
which are based on the Jacobian of the internal forces in the structure and not a linear multi-step formula. In



the case of HHT-o, where Newmark formula is used with = 1/4 and y= Y, it is implicitly assumed that the
acceleration is constant from time step i to time step i+1. Presented in this form, the implementation of this
algorithm is relatively easy. The extension to nonlinear problem is straight forward since it is based on the
evaluation of the internal forces in the structure.

In terms of computational effort this method is competitive with other one-step algorithms. For linear
problems with a fixed time step, dt, the algorithm requires a single assembly of the tangential stiffness and
damping matrices which remain constant during the analysis. For each time step, the forward solution uses
two sets of linear systems instead of one for the HHT-a algorithm. For nonlinear problems the computational
cost is governed by the number of formation of stiffness and damping matrices as well as the decomposition
of the M* matrix, which is similar to other implicit methods.

ntrol of th ility of the numeri hem

To control the stability of the numerical solution using the HHT-o and modified Rosenbrock algorithms, the
seismic energy balance criterion is used together with equilibrium to ensure convergence. The energy balance
of the system is computed as the absolute error between the input energy and the energy dissipated in the
structure.

E+E)-(E, +E+E)
(E,*E)

100% ®)

Where E, is the energy due to earthquake input, E, is the deformation energy due to pre-seismic loads, E, is
the kinetic energy, E; is the viscous damping energy and E, is the elastic deformation energy in the structure.

NUMERICAL EXAMPLE

The damage model presented in this paper is implemented within a finite element code (Ghrib, 1994). The two
time-marching algorithms discussed above can be used. The seismic analysis of Koyna dam is discussed as a
numerical example as well as a benchmark for validation of numerical models. The numerical experiments have
indicated that the cracking response is strongly depending on the material constitutive model (isotropic or
orthotropic) as well as the viscous damping representation. In this paper, only orthotropic damage model and
damage proportional damping is considered. In this case, the damping matrix is defined as follows:

[Cd] = C[Kd] 9

The parameter { is calibrated to provide 5% of damping on the initial fundamental mode. The model and the
finite element mesh are presented in Fig. 2. The foundation is considered rigid and the hydrodynamic effect
of the reservoir is simulated using Westergaard added masses. Fig. 2 shows the horizontal and vertical
components of the accelerograms.

The mass density of the concrete is p= 2600 kg/m3, E=30000 MPa, v=0.2. The fracture resistance is defined
mainly by the tensile strength f, = 1.8 MPa and the fracture energy G; = 180 N/m.

When using Newmark algorithm ( HHT-o with «=0 ) the analysis failed and the energy error increased
rapidly at about 4.5 sec. Newmark algorithm is free of any numerical damping and therefore there is no control
on the high-frequency components. The spurious oscillations alter dramatically the solution.
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Controlling the high-frequency modes by using non-zero o parameter (¢ = -0.1) eliminated the problem and
convergence is achieved with an energy error less than 1%. The damage map showing the evolution of
cracking in the structure is shown in Fig. 3. The global crack profile is comparable to what was observed in
the field and simulated by experimentation. To show the efficiency of the constitutive model in simulating
fracture, the principal stress of a selected element is presented in Fig. 4. Linear analysis shows an excessive
stress and the damage mechanics model removed completely the tensile stress transmitting capability of the
element after cracking. The different components of the energy balance is shown in Fig. 5. The viscous
damping mechanism dissipates most part of the energy transmitted to the dam.

The dam was analysed using the modified Rosenbrock algorithm. In this case, no adjustment parameter is
needed. Because of its “asymptotic annihilating” properties, this scheme eliminates the high-frequency
components from the response. Fig. 6 shows a comparison of the crest displacement obtained by HHT-a
(¢=-0.1) and modified Rosenbrock methods. The response is almost the same. The stress history of a selected
element at the downstream face of the dam, presented in Fig. 7, confirms the similarity of the results. By
examining the time history of the energy error of the two algorithms, Fig. 8 shows that the modified
Rosenbrock algorithm is smoother than HHT-« and produces a smaller global error.
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CONCLUSIONS

A Damage Mechanics model for the seismic response of concrete dams has been presented taking into
consideration cracking of the material. This model offers distinct advantages over discrete crack models. A
comparison between the HHT-¢. and the modified Rosenbrock algorithm shows that the second one appears
to produce less errors in the global energy balance check. In addition, no parametric investigation for o is
required to ensure numerical stability.
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