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A direct method is presented for the conditional simulation of Gaussian spatially incoherent three-dimensional
time histories of earthquake ground motion. The method is shown to be applicable when no restrictions are
placed on the prescribed cross-correlation or cross-spectral density functions, except that they are positive
definite, as well as in simpler situations resulting from restrictions sometimes used in earthquake engineering.
The major computational effort in the simulation procedure is in the simultaneous solution of linear algebraic
equations for required filtering functions. Particular attention is also given to the substantial reductions in
computational effort which result from certain simplifying assumptions about the cross-spectral density terms.
The method is shown to be almost four times as efficient as a method in the literature which involves inverting
a matrix of cross-spectral densities. It is shown, though, that by taking advantage of a simplifying assumption
which is sometimes adopted in the earthquake engineering, one can simulate three components of seismic motion
with essentially the same effort as is required for only one component. Numerical examples demonstrate that
the highly efficient direct method is effective even in situations with very high correlation between the time
histories of motion at different points.
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INTRODUCTION
Seismic ground motion involved in earthquake engineering problems can be reasonably modeled as a three-
dimensional stochastic random field. Simulation of random variates and single random processes has been

common for many years, but simulation of spatially incoherent random fields has received relatively less attention
until quite recently (Hoshiya, 1995; Kameda and Morikawa, 1993,1994; Vanmarke ef al., 1991; Shinozuka and



Deodatis, 1991). The term conditional simulation is used for any technique in which one simulates new time
histories which have prescribed correlation with a set of known time histories, as well as other prescribed
properties. It has been noted, however, that most conditional simulation techniques (Kameda, 1993, 1994;
Hoshiya, 1995) involve huge computations, even for simulation of a one dimensional random field. The
emphasis here is to develop an efficient, simplified simulation algorithm. The major computation involved in
the conditional simulation of a Gaussian, spatially incoherent random field using the formulation presented here
is in solving a set of linear algebraic equations. The method extensively reduces the computational effort and
can match any specified correlation of the random field. A numerical example is presented to illustrate the
advantages of the proposed simulation technique. It is based on typical earthquake recordings and spatial
incoherence information from recent analysis of array data.

BASIC CONCEPT OF CONDITIONAL SIMULATION

The problem is to simulate a three-dimensional time history £"(f) ={£,() , £,"(?), &,"(9)}" for a new location n
which has prescribed spectral properties with given time histories §'(¢), £%(?),...,§™" (¢) which are also three-
dimensional at the previous #-1 locations. The desired properties of the time histories can be given by stationary
correlation matrices defined by
R™() - E[E/(DE™ (+-1)] M

in which &’ () is the stationary vector random process truncated to be non-zero only on a time interval of
length 7, and the superscript T denotes a transpose. Note that the / and m superscripts denote locations, while
subscripts will be used to designate the components of the random field at a particular location. In the
conditional simulation of three-dimensional random fields, we will choose to simulate the components at location
nin the order £,7(f), then £ ,(#), then ,(7). Each component will be simulated by adding its conditional mean
to a random deviate which is independent of all prior components. The situation is simplified by the fact that
the conditional mean of a Gaussian random process is always a linear function of the given information. Let g,"(¥)
and y,"(?) represent the conditional mean and the random deviate corresponding to the component §,’(9) (r=
x, ¥, z) of the seismic random motion such that

D) - g, (D9, (D) for r-x,y,z @
This relation can be converted into the frequency domain by applying the Fourier transform of eq. (2) as
E:(w)= G,"((o)+‘P:(m) for r-x,y,z 3)

Although the mean zero, Gaussian random deviates ,”(?) or ¥,”(w) are independent of the prior time histories
they must be described by the required conditional spectral density functions given in the following sections.
Thus, to simulate a three-dimensional random field, one must determine conditional mean values and spectral
density functions.

DIRECT EVALUATION OF CONDITIONAL STATISTICS

Conditional Mean The conditional mean of the £ " (£) vector will be written as g "(?), defined as
g ® ELE;(OHE' (), &> ()., 6~ ()]
gt -|g' @) |- ELE; (DUE (L EX (... 8~ (DL ()] “)
g, @) ELE](OHE'(OLEX (O B (OLE (DL (DM



The most general form for the linear dependence of g'(f) on the given information can be written as a sum of
convolution integrals:
g"(?) - —E fW"‘(a)E‘(t -a)da 5)
2% n 7

with the weighting matrices w™( ) being full 3x3 matrices for /<n, and w™(&) being zero expect for all terms
below the major diagonal. The problem of finding the conditional mean of § ” (#) is now to find all these
unknown w,(2) (j,k=x,y,z) weighting functions. A general property of conditional expectation is used to derive
equations describing these weighting functions,. This can be stated as

E[Yh(X)] -E[E[Yh(X)|X]]-E[E[Y]|X]A(X)] (6)
for any random variate ¥ and any function & of the random vector X. This relation can be utilized in evaluating
terms of the form R,™(7)=E[§,"()€,"(#-7)]. This involves replacing ¥ by §,"(), A(X) by §,"(s-7), and X by
the appropriate given information for £;'(f), as given in eq.(6). The given information for the §,"(f) component

always includes &,"(?) for k=x,y,z and m=1 to n-1. For r=y it also includes §,"(#), and for r=z it includes both
E,"(f) and £,"(7). We can now use eq.(6) to simplify the necessary expressions for correlation by writing

RY@-ELE (O & (-] - Elg () & (-]
Ly f W (e) Ry (v-a)da

2n T L1 Jx <

™)

In principle, these simultaneous integral equations can be solved to determine the w (a) weighting functions,
but in practice it is more convenient to use the Fourier transform to obtain algebrmc equations:

Sr@)-3 Y W) ST (0) ®

+1 jx
The filtering functions W, *(w) (7, k=1x, y, z ;1 =1, 2, ..., n') are simply the Fourier transforms of the

corresponding weighting functions w,™(#). The S,™(w) and S,,”(w) terms are the desired spectral density
functions of the motion. The fact that the w "(f) and W™( ) matrices have non-zero terms only below the
diagonal assures that only the prior components are included as conditioning information in egs.(7) and (8). Note
also that eq.(8) shows that the W,,(w) functions are uncoupled from the W,"() (j #r ) functions. In principle,
one can find the conditional mean g"(¢) by solving eq.(8) for the required filtering functions. After these required
filtering functions have been computed, it is convenient to find the conditional mean g "(#) by using the Fourier
transform of eq.(5), giving

g () -Y fW"’(w)E'(w)e“"‘dw ©)

in which W "( w) is the 3x3 filtering function matrix with complex elements W,,"(w).

Conditional Spectral Density Eq. (3) indicates that, the spectral density corresponding to the random deviate
¥,7(0) = £,7(f) -g."()) (r=x, ¥, z) [or equivalently, in the frequency domain as ¥,*(w) = E,"(w) - G,"(w)] can be
directly obtained by

5(0) - 2 E[2(@) ¥} (0)]- 2T EHE](0)- G/ (@) ¥7'(w)]
=7[S'"'(w) >3 w («»)S.’:(w)] (10)

kl k1

This spectral density, along with the conditional mean G,*(w), gives sufficient information to allow one to



simulate the time history §,(?) for » =x, y, z according to egs.(2) or (3). In particular, to simulate the random
deviates the complex random process ¥,"(w) can be chosen as

T:(w) - Brew’ for r-x,y,z (11)

with B, and 6, being independent real random variates, with B, having E[B,?]=E['P,"¥,”] and being Rayleigh
distributed and 6, being uniformly distributed on [0, 27]. This results in the real and imaginary components of
¥ ,"( @) having independent Gaussian distributions with mean zero and the appropriate value for the spectral
density. Based on the definition given by eq.(3), the relationship between B, and P,(w) is

E[B,z] =_2Iu— 5" (w) for r=x,y,z (12)

It is obvious that the term E [ B,2] can also be considered to be the conditional variance of the frequency domain
random process E,"( tb). After the random process ¥,”( w) has been obtained one can determine the Fourier
transform of the motion according to eq.(3) and the time histories of the random field can be evaluated by
performing the inverse Fourier transformation.

FINDING FILTERING FUNCTIONS USING UPDATING ALGORITHM

Prior to simulating any particular component of motion it is necessary to evaluate the pertinent filtering functions
by solving a set of simultaneous algebraic equations with a Hermitian coefficient matrix. The dimension of the
matrix is equal to the number of prior components. For the simulation of a three-dimensional random field at
a total of NV locations this involves the sequential solution of matrix equations of dimension j for /=1 to 3N-1.
The computational effort can be quantified by counting the number of floating point operations (flops) involved
(Golub and Van Loan, 1989). The number of flops to solve a matrix equation of dimension j is proportional to
Jj 3, so that if no advanced algorithm is used the sequential solution of the matrix equations associated with all
the 3N components is proportional to (3N)*. This would require a huge amount of computational effort when
N is large. Fortunately, the form of the matrix and vectors involved is such that it is possible to use more
efficient procedures in which the number of flops is only proportional to the cubic power of the number of
components, as has previously been done for one-dimensional random fields (Kameda and Morikawa,
1993,1994; Lutes ef al., 1996). The method used here is an efficient algorithm in which the Cholesky
decomposition for any particular j values is found by updating the decomposition used at the previous stage.

To simplify the presentation, let eq.(8) be rewritten as
Am("’) xU](Q) = ‘m(m) (13)

in which all the elements are complex, the vector X, (0 ) consists of the unknown filtering functions, and the
square matrix A () and the vector a , (w )consist of specified spectral density components. The subscripts
give the dimension of each array. Efficient solution of the sequential equations is possible because of the
following two facts: the coefficient matrix Ay (e )is exactly the matrix Ay (o ) from the previous stage with
one column and one row added, and the first (j-1) elements of the added column are exactly the vector 2, (@)
from the previous stage. Thus, the new elements introduced at stage j are the vector a,,(w) and the (/)
element of Ap(w). Since the matrix Ay, (@) is Hermitian in nature it can be decomposed by using the
modified Cholesky decomposition procedure as Ap(e)-L,(w) L;,’;(w) in which L (e )is a lower
triangular matrix. Solution of eq.(13) then involves solving two triangular equations: Lyj(0) Y (0)=a,(w)



and L'Url(m )X (@)=Y (). Furthermore, the special nature of the problem allows one to write

L, (o) 0

. 14)
Yuz:ll(“’) lm("’ )

Li(«) -

in which the two left hand submatrices come directly from the Cholesky solution from the previous stage. The
sclalar element in the lower right corner is found by noting that the (j,/) element of A, (« )must be given by
Y (©) Y, (@)+] (@)} (@). Thus, one can write

1(0) - {4,,(0)- Y (@)Y, (o) e® (15)
in which 0 is an arbitrary phase angle.

The major computation involved for solving a real linear equation with a jxj coefficient matrix using Cholesky
decomposition is about 2(j-1)? flops. This gives a total about 18N flops to perform the required computations
for finding X, (w) for j =2,...,3N-1. Since the effort to solve complex simultaneous equations is about 4 times
that required for solving a similar array of real equations (Lutes ef al., 1996), the major computation involved
in evaluating all required filtering finctions for simulation of a general three-dimensional random field at a total
of N locations is approximately 72N 3 flops. A summary of this efficient updating algorithm is given in Tablel.

Table 1 Updating algorithm for solving filtering functions

Given A, (w), perform the Cholesky decomposition: A, (@)=L, (@)L, (® )
Find Y, (0 )and X, (@ )by solving L, () Y, (@)= ap,,(0), Lgl(m )Xy (0)=Y (o)
Forj =3 to 3N-1
Form Lm(m)[eq.(l4)] by using Ly (0), Yy (e yand I(0)
with [(@) = 4, (0)- Y, (0)¥, (o) "
Find Y, (w)and X, (@ )by solving L (©) Y, (@)=a,,(0), L (@)TX,(©)=Y ()
end of j loop
Output Ws(w)(r,k=x, y, z; I= 1,2,...N) according to X (@)(j=2,..,3N-1)

SIMPLIFICATIONS FOR EARTHQUAKE MODEL

Simplication resulting from a scalar cross-spectral relationship The results derived so far have no restrictions
placed on the form of the R™(7) correlation matrices or, equivalently, the 8§ ™( @ ) spectral density matrices to
be matched in the simulation. However, significant simplification of the computation can be achieved by
considering some special features of models used to approximate seismic motions in earthquake engineering
research. First, let us consider a commonly used seismic model (Haricahandran and Vanmarcke, 1984) in which
the cross-spectral density relationship between the seismic motions is essentially scalar in nature:
$™(0) - ¢™(w)8%w) (16)

in which ¢™( )for locations / and m is a scalar function (real or complex) of frequency » which satisfies
¢™(w)=1for I=m, and §°(w )is a given target spectral density matrix with elements S (o) (i,k=x),2). It
can be shown (Jin et al., 1995) that substituting eq.(16) into eq.(8) gives W',",( w ) as being the same for r =x,



¥, z. This is true for /=1,...n-1, and these filtering functions are the solutions of

»1
g™(w)-Y q""(w)W':',(o) for m=1,...,n-1; an
X1
The other filtering functions for /<n are given by

_ Wo(0)=Fa(w)=Wn(w)=0
Fr(@)--Fo(0)Fa(e), Fy(e)--Fo(e)Fy(e), Fr(e):--Fa(e)F, (o) (18)
and for /=n the results are
Wo(0)=S,(0)/S. ()

W2(@)-[85,(0)5,,(0)-5,(0)5,(0)/5,(0)5,(0)-5,(0)85,(0)]

By (0):[Se ()53 (0)-55,(0)855,(0))/[S(0)5,(0)-5,(0)5, ()] (19)
In this formulation the only simultaneous equations to be solved are the set of dimension 7-1 in eq.(17).This
reduces the computational effort by approximately a factor of 27 as compared to solving eq.(8), since it is of
dimension 3(n-1).

Simplication resulting from a real incoherence structure The computational task can be further reduced when
one adopts another simplification commonly used in earthquake engineering (Haricahandran and Vanmarcke,
1984; Luco and Wong 1986; Vanmarke et al., 1993) in which the incoherence of the seismic random
components can be described by a real function. In particular, let the scalar cross-spectral density term of
eq.(16) be a product of two terms, one of which is real and represents the amplitude of ¢™(w )and, the other
of which is complex with unit absolute value, representing only a phase difference between the frequency @
components of seismic motion at / and m:

g™ (w) - d"(0) $™(0) (20)

with 5™ (w )being real and | ™ (® )|=1. Theterm »™(w )=|g™(w )| gives the random incoherence between
the motion at points / and m, while the term ¢™(® )gives the phase change from one location to the other. If
one now imposes the condition that ¢™(w ) ¢¥(w)=¢" (), as when ¢™(w )represents coherent wave

passage across the site, the result can be written as
»1

Y ™(w)Zz¥(w)-"(o) for m=1, ..., n-1 (21)
k1
in which the unknowns are the real quantities Z%(w )-$"*(®) W:(o Yfor I=1,...,n-1. Thus, the problem of

finding all the required filtering functions involved in the simulation has now been reduced to that of solving n-1
real scalar simultaneous linear equations, plus simple multiplication operations involving complex numbers. The
resulting reduction in computation due to the use of the real incoherence structure is approximately a factor of
4. This is in addition to the factor of 27 resulting from the use of eq.(17).

As an alternative to the direct method presented here, it should be noted that one can perform the conditional
simulation by using Gaussian conditional probability density functions. This method was implemented for one-
dimensional processes by Kameda and Morikawa (1994), with the major computation being the inversion of a
covariance matrix. It has been shown (Lutes ef al. 1996) that their algorithm requires almost four times as much
computation as in the direct method presented here, but that the efficiency of the probability density method can
be improved by using a matrix inversion approach suggested by Hoshiya (1995) or by an approach in which only
the needed elements of the matrix inverse are computed. In this latter form, the probability density method has
been shown to be as efficient as the direct method for the one-dimensional problem, and it also could be
efficiently adapted to three-dimensional problems.



NUMERICAL EXAMPLE

As a numerical example we simulate a three-dimensional seismic random field based on the recordings of a
typical earthquake (El Centro 1940) and the available information about the spectral incoherence relationship
between seismic motions at different surface locations (Haricahandran and Vanmarcke, 1984). The seismic
spectral incoherence structure of the earthquake ground motion has been defined by the most popularly used
scalar form with real incoherence as suggested by Haricahandran and Vanmarcke (1984):

¢""(m)-exp(im(r,-rm)°L/c‘ ) (22)
b™(w) - exp(-[yo|r,-r v, 1") (23)

where L is a horizontal unit vector oriented in the direction of
apparent wave propagation, r,, or r; is the position vector at the
surface of the soil medium and ¢, =v, /sina is the apparent
velocity of horizontal seismic wave propagation due to seismic
wave propagation, with v, being the wave propagation speed of
the soil medium and « the angle of the wave propagation
filrectlon relative to the vertical axis as shown in tl?e ?1g. 1, The Fig. 1. Definition of the parameters
incoherence parameter y has been taken to range within 0.0~0.5 involved in description of seismic
and p has been given a value of 1.9 (Lutes e al., 1996). The ground motion

time histories of the El Centro earthquake recording include three components of accelerations have been
utilized to evaluate the spectral density functions and to provide the target, local stochastic information for the
random field to be simulated. Using the present simulation method, the three components of the displacement
time histories of the seismic random field have been generated using v,=100n/s, «=45°,y=0.3 and f=0° ata
total N=100 surface locations. Fig.2 shows a portion of the plots of the components of the displacement time
histories at 10 equally spaced surface locations along the x axis.

x component y component

Fig. 2. Simulated displacement time histories of the seismic ground motion at 10 linearly
arranged, equally spaced surface locations (v,=100m/s, a==/4,p=0, y=0.3)



SUMMARY AND CONCLUSIONS

An efficient method for simulation of multi-dimensional, spatially incoherent random fields has been presented
using filtering functions derived from the conditional statistics of the seismic random field. The simulation of
a three-dimensional random field can be performed as a simple procedure of evaluating the required filtering
functions and using these functions to obtain the desired time histories. It has been found that for a popularly
used seismic excitation model with a scalar cross-spectral correlation and a real spectral incoherence function,
the solution of the required filtering functions using the presented method is particularly simple and
computationally efficient.
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