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ABSTRACT

The participation of concrete in the mechanism of shear resistance of reinforced concrete (r.c.) mem-
bers subjected to cyclic load reversals is investigated in this paper with the objective to study the
relationship between shear strength and deformation demand. Recent experimental studies have il-
lustrated that the concrete contribution to shear resistance, taken as a fixed quantity in the current
design practice, degrades with increasing ductility demand. The parametric dependence of the me-
chanics of cyclic-shear behaviour of r.c. elements is assessed here by means of a nonlinear analytical
model of cyclic plane stress states. The formulation establishes tensorial, constitutive and equilibrium
relations, all expressed in terms of average stresses and average strains. The goal of this study has
been to quantify the components of a recently proposed conceptual model which is intended to reflect
in the design process the dependence of concrete shear resistance on ductility demand.
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INTRODUCTION

Recent experimental studies (Ghee et al., 1989; Aschheim et al., 1992; Wong et al., 1993; Priestley et
al., 1994) have led to empirical formulations that express the concrete contribution to shear resistance
as a degrading quantity with increasing displacement ductility (d.d) demand. These approaches provide
a novel outlook in earthquake design of r.c., wherein it is necessary to assess deformability demand
as well as strength requirements, and to link resistance supply to deformation demand. The objective
of this paper is to investigate the mechanical problem of cyclic shear in r.c., and to contribute to
the development of a simplified ductility-based estimation of shear resistance for earthquake design
applications.



Current Design Guidelines

In estimating the nominal shear strength of r.c. members, V,, current design guidelines consider a
portion of the shear to be resisted by the concrete, V;, while the remainder is resisted by the steel,
Vi, ie., Vo = Vo +V, (ACI, 1989; simplified method in CSA, 1984). The force resisted by the shear
reinforcement, V;, is obtained from the 45°-truss model formulated by Ritter (1899) and Mérsch (1902)
and corresponds to yielding conditions of the steel.

The shear strength provided by the concrete, V., taken as the shear force corresponding to initiation
of diagonal cracking, has been assessed empirically from experimental data and is given in terms of
stress units (MPa) as

P
ACIL: v, =0.17/f! (1 + 14Ay) (1)
CSA: v.=0.204/f! (1 + —3i) (2)
feAg

where P is the factored axial load (positive in compression) and A, is the gross cross-sectional area
of the element. For conservatism, for r.c. members designed to withstand earthquake loading, the
ACI and CSA codes take the concrete shear contribution stress v, to be zero if the factored axial
compressive stress (based on gross section dimensions and including earthquake effects) is less than
a small fraction of f] (6% for ACI and 10% for CSA, respectively). For cases where the axial com-
pressive stresses exceed the above limiting values, v, is given by Eq. 1 and Eq. 2. These values have
been shown to give conservative estimates of shear strength at low levels of d.d. demand, whereas
they are unconservative at high values of d.d., since they fail to recognize the degradation of concrete
compressive strength with increasing crack widths.

A completely different approach has been recently adopted by the AIJ code (1994). The Japanese
design guidelines, based on the superposition of a truss and an arch-action shear resisting mechanisms,
use a lower bound plasticity approach, in which both the concrete and the reinforcement are assumed
to be under yielding conditions. In the same line as the above guidelines, the shear force carried by
the truss mechanism is expressed in terms of the yielding stress of the shear reinforcement. However,
the shear force carried by the arch mechanism, i.e., the contribution of concrete to shear strength, is
reduced linearly with increasing inelastic rotation by introducing an effectiveness factor for the concrete
compressive strength f..

Shear Strength Models

Recent experimental studies on r.c. members, mainly columns, have led to several researchers to
propose conceptual models with the objective of reflecting the reduction in the shear carrying capacity
of concrete with increasing levels of d.d. demand (Ghee et al., 1989; Aschheim et al., 1992; Wong et
al., 1993; Priestley et al., 1994). In general, the concrete contribution V; to the shear strength of r.c.
members is assumed to be independent of the level of deformation at low d.d.. Most of the proposed
models suggest a constant initial value for V, up to a d.d. of 2 (Ang et al., 1989; Aschheim et al., 1992;
Priestley et al., 1994). At large d.d. (usually in excess of 4), V, is assigned a fixed residual value.
The shear contribution of concrete is assumed to degrade linearly for d.d. values that fall in between
those two limits (see Fig. 1). These conceptual relationships reflect the reduction in shear strength
with increasing d.d. demand and identify the increase in shear capacity with increasing amount of
transverse reinforcement and level of axial load.
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Fig. 1: Model for shear strength degradation.

ANALYTICAL EVALUATION OF V,

The relation between shear strength and deformation demand was studied by defining the mechanical
behaviour of a simple r.c. element whose deformation is primarily characterized by in-plane shear
distortion. A nonlinear analytical model was developed to assess the response of such an element
subjected to reversed cyclic in-plane stresses.

In the analytical model developed, material stresses are approximated by a state of plane stress. The
model assumes adequate detailing so that cracks are smeared out across the r.c. element and the
reinforcing bars are uniformly distributed in two orthogonal directions. Because of these two assump-
tions, the behaviour of the material is formulated in terms of average stresses and average strains.
It is further assumed that the crack planes coincide with planes of maximum normal tensile strain,
and that cracked concrete behaves as an orthotropic material with the material axes being oriented
along the directions of principal stresses. The direction of principal strains is assumed to coincide
with the direction of principal stresses for cracked concrete. Average stresses and average strains are
related by a secant-material stiffness, in which dilatancy associated with the principal compressive
stress direction is neglected. Concrete and reinforcement are assumed to develop compatible (equal)
amounts of average deformation, i.e., bond slip can occur only locally.

The material stiffness of the composite material is obtained by superposition of the material stiffnesses
of the individual material components, allowing to treat the constitutive relations for concrete and
steel independently (see Fig. 2).
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Principal stress, f
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Fig. 2: Material models: a) concrete in compression and tension; b) steel.



Model Formulation

Given the boundary axial stresses n, and n,, the problem at hand is to find the resulting shear stress
Vay Tequired to maintain equilibrium in the r.c. element for a given angle of imposed shear distortion
Y=y With cyclic history over a specified number of cycles (Fig. 3). To solve the problem, the formulation
establishes tensorial, constitutive and equilibrium relations expressed in terms of average stress and
deformation values.

Kinematic and Equilibrium Considerations. The states of deformation and stress of the r.c.
element are given by the second-order tensors ¢;; and o0;;, respectively, i.e.,

€z 1%1 f cx Vay
€; = = O = 3
’ ( 151 €y ) N ( Vzy f cy ( )
where €, and €, are the average strains in the z and y-directions, respectively, 7., is the average angle

of shear distortion, f.; and f., are the average concrete stresses in the z and y-directions, respectively,
and v, is the shear stress. Expressions that relate the entries of the stress tensor are

fcl+fc2 = fc:n+fcy (4)
fcl - fca: = Vay tan 6 (5)
fa=lo = t;;yo (©)

where fo and f.o are the average principal tensile and compressive stresses in the concrete, respec-
tively, and 6 gives the direction of average principal tensile strain measured from the z-axis. Note that
the convention used here is tension positive.
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Fig. 3: Membrane element: a) externally applied stresses; b) average stresses; c) average strains.

The contributions from concrete and steel are calculated separately and then added together to satisfy
equilibrium. The equilibrium of horizontal and vertical forces is established by integrating the stresses
over the cross-sectional area. By ignoring the small reduction in the area of concrete due to the
presence of the reinforcing bars, the equilibrium equations in terms of average stresses are simplified
to

Ne = fez+ Pefox (7)
Ny = foy+ pyfsy (8)

where p. and p, are the reinforcement ratios and f,, and f,, are the average stresses of the reinforce-
ment in the x and y-direction, respectively.



Solution Procedure. The non-linear solution of the system of equilibrium equations (Eq. 7 and
Eq. 8) was controlled by means of a step-wise increment (either positive or negative) in the value of
shear strain v,, according to a prescribed deformation history. An iterative procedure is performed
for each value of v,, until tensorial and equilibrium relations are simultaneously satisfied.

Concrete Shear Contribution

Following the currently adopted design code approach, the shear stress v,, has been estimated in this
study as the sum of three contributions: the shear stress carried by the concrete-resisting mechanisms
v, (such as residual tensile capacity of concrete and aggregate interlock), the shear stress carried by
the reinforcement v,, and the shear stress resisted by the presence of axial loads v,. From tensorial
and equilibrium relations, the shear stress v,, in terms of average stresses is evaluated from

1

Vey = m (fcl + Px f.sz - na:) (9)

By identifying the contribution to shear resistance of the steel v, as cot 6 p f,., and of the axial load
vp as — cot @ n,, the concrete contribution to shear resistance v, is given by

fcl
Ve = Voy = Vs = Vp = g (10)

PARAMETRIC STUDY

To identify the critical variables that control the mechanism of cyclic-shear resistance, a sensitivity
study of the concrete shear contribution to different design parameters was conducted using the an-
alytical model described in the preceding. The parameters selected were the applied load history
(Fig. 4(a)), the concrete compressive strength f7, ranging from 14 to 40 MPa, the yielding stress of the
reinforcement in the z and y-direction f,; and f,,, ranging from 250 to 450 MPa, the corresponding
reinforcement ratios p; and py, ranging from 0.25% to 2.00%, and the normal boundary stresses n,
and n,, taken as 5% and 10% of f.. The effect of each parameter was studied by varying its value
while maintaining the remainder input variables constant. A total of 22 cases were evaluated.

Results

Influence of Load History. Two different sequences of imposed displacements were applied to one
of the study cases (f'c = 20 MPa, f,. = f,, = 350 MPa, p, = p, = 1.00%, n, = n, = 0 MPa) in order
to determine the effect of load history on v.. The resulting concrete contribution normalized to \/f—é
versus ductility u.,, defined herein as the ratio of the attained shear strain at a specific point in the
displacement history to the shear strain corresponding to first yielding of the reinforcement in either
direction, i.e., fty = Yay/Vzyyid, i plotted in Fig. 4(b) for both load histories. The solid and dashed
lines correspond to the values of v, given by the design codes (ACI, 1989; CSA, 1984). The model
does not reflect a reduction of v, as the number of cycles at a fixed ductility level increase since the
envelope curves used for the various constitutive relations do not degrade with increasing number of
cycles at a fixed deformation level.

Influence of f.. The effect of the compressive strength f! on the concrete contribution to shear

resistance is illustrated in Fig. 5(a), which plots the calculated values of v, versus ductility for f/
equal to 14 and 40 MPa. Shear strength degradation takes place at lower ductility levels for higher
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Fig. 4: a) Load histories considered; b) Influence of load history on v..

compressive strengths. For high compressive strengths, the load-deformation response of plane-stress
elements tends to be governed by yielding of the reinforcement. Because the shear strain corresponding
to steel yielding decreased with increasing compressive strength f., the estimated deformation of the
r.c. element at a given level of ductility decreased as f! increased.

Influence of f,, and f,,. The influence of the reinforcement yield stresses f,, and f,, in determining
the contribution of concrete to shear resistance was also evaluated by considering values in the range of
250 MPa to 450 MPa. Figure 5(b) shows the relationship between normalized concrete shear strength
and ductility levels resulting from changing both yielding stresses simultaneously to 250 MPa and
450 MPa. The concrete contribution is higher and the rate of strength degradation is lower for lower
yielding strengths. Lower yielding strengths correspond to lower magnitudes of principal tensile strain,
€1, which is an indirect measure of the state of damage due to cracking in the concrete. At high values
of €; the concrete loses its ability to carry tensile stresses and thus a lower contribution to shear
resistance results. When only one of the two yielding stresses is varied, it was observed that the
reduction in v, with increasing yield strength is less pronounced.

Influence of p. and py. The parametric influence of the reinforcement ratios p, and p, on the re-
sulting value of v, was also investigated by increasing simultaneously both reinforcement ratios first,
followed by the case where only p, was varied while p, was maintained at constant magnitude (1.00%).
Figure 5(c) illustrates the effect on v. as only one of the two reinforcement ratios is varied (p, = 0.25%,
py = 2.00%). The results are in agreement with reported experimental observations (Ang et al., 1989;
Aschheim et al., 1992); Wong et al., 1993) wherein an increase in the transverse reinforcement amount
delays the onset of shear strength degradation to higher ductility levels.

Influence of n, and n,. Numerical examples were run by applying normal boundary stresses equal

to 5% and 10% of the compressive strength f.. The resulting normalized concrete contribution v,/ \/f—c’
versus ductility ., is plotted in Fig. 5(d). It has been observed from experimental data that the load at
which cracking occurs increases with the level of applied axial load (Ang et al., 1989). The reason for
this is the reduced magnitude of the tensile strains resulting from load confinement, which enhances
the aggregate interlock capacity along the crack planes and the transfer of compression loads across
the cracks. This experimental evidence is implied in the design code equations for cases where the
applied compression stresses are greater than 5% and 10% of the concrete compressive strength f..
According to Fig. 5(d), the initial shear stress carried by the concrete-resisting mechanisms does not




differ much for different uniaxial stress states. However, note that the axial load contribution to shear
v, has not been taken into account in calculating v, as the current design equations do.
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Fig. 5: Influence of various parameters on v,. (The arrows indicate trends given by increasing the
particular parameter.)

CONCLUSIONS

The numerical analyses performed here indicate that the concrete contribution to shear resistance of
r.c. elements degrades with increasing deformation demand. It is also observed that the concrete shear
contribution is enhanced by an increase in the amount of reinforcement along one direction, which has
been experimentally observed and quantified by Aschheim et al. (1992), and an increase in the level
of axial load applied, already taken into account in the current design equations.

The current design practice tends to give conservative estimates of shear strength for low levels of
deformation demand; however, the fact that this approach is independent of the attained ductility
level results in unconservative values of v, at high levels of deformation, critical for r.c. structures that
undergo inelastic deformation under earthquake loading. It is the objective of this work to propose an
alternative yet simple design equation that reflects the experimental fact that the shear contribution
of concrete diminishes with increasing ductility demand and is enhanced with increasing amount of
transverse reinforcement and axial load. An equation that takes into account these phenomena is given
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Fig. 6: Model for concrete shear strength degradation (Eq. 11) of r.c. members subjected to seismic
loading.

in terms of stress units (MPa) as -

_an gzl
vc_(1+u)\/7°ll ﬁ\/f—;] )

where p; is the amount of shear reinforcement, y is the attained ductility index, and n is the axial
stress applied (positive in tension). The values of the constants « and 3 have been assessed analytically

and assigned to be 37 and 7.6, respectively. Note that the term o \/f_é (1-p8n/ \/)T;) is similar to the
existing code expressions (Eq. 1 and Eq. 2). The difference is in the additional factor p./(1 + p),
which is meant to reflect the dependence of v, on the transverse reinforcement amount and ductility
demand (see Fig. 6). The conservative estimates of v, at low levels of deformation given by the current
design equations (Eq. 1 and Eq. 2) are valid for linear elastic design of r.c. members. However, it is
suggested that the concrete contribution to shear strength of r.c. elements subjected to seismic loading
be evaluated from an expression such as the one proposed herein (Eq. 11). These simple guidelines
aiming to reflect in the design process the experimental fact that the concrete contribution to shear
resistance diminishes with increasing ductility demand contribute towards rationalizing of the shear
design methods in earthquake resisting elements.
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