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ABSTRACT

This paper describes the analytical studies that were performed to identify the best shaking table testing
strategies to be used in the experimental study of bridge models. Bridge structures are idealised by a spatial
model with 6 d.o.f. per node, assuming that non-linear behaviour will occur only in the piers due to bending,
and so a fibre type model is used. The results of the application of the developed testing strategy to a model
of a bridge structure with piers of unequal height are presented and discussed.
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INTRODUCTION

The principal characteristic of a shaking table test in the nonlinear range is that each model can be tested only
one time, in principle. Under the assumption that tests are carried out to obtain "information" about the
probability of failure, one may compare:

i) The "information" given by a fictitious set of models that are tested only one time and then discarded;
different models are tested for different intensities;

ii) The "information" given by a single model that is tested for increasing intensities of shaking; those
intensities are defined by a geometric series with a common ratio o of the values of the peak acceleration.

The "information" given by the tests is evaluated in a Bayesian framework in which “information" is
associated to a probability distribution defined in the space of the vulnerability functions of the bridge under
consideration. Results of the shaking table tests allow a sharpening of this a priori distribution through the
Bayes theorem and the basic fact that the average value of the response, computed from several realizations
of the stochastic process that idealizes earthquake vibration, has a distribution that is very nearly a gaussian
distribution.

Sequences of case ii) tests with different values of o were simulated, and their "information" was compared
with the information from a case i) test, in order to identify the best value for a. After that, the sequences
were analyzed again considering that the model at the beginning of each test is already damaged.



BAYESIAN METHODOLOGY FOR THE QUANTIFICATION OF THE PROBABILITY OF
FAILURE

According to the methodology developed at LNEC the computation of the probability of failure is based on
the knowledge of the vulnerability function. This function is a non-linear function which relates the
parameters describing the severity of earthquake actions (h) with the variables that describe their effects in the
structures (c). The direct estimation of the vulnerability function requires heavy computational effort (Vaz et
al, 1996) and so an alternative procedure, based on the application of the theorem of Bayes has been
developed.

The theorem of Bayes relates a priori probabilities with a posteriori probabilities, taking into account the
occurrence of some event. Let S = {s;, 52, 83, ... } be a probability space in which states s, s, s3, ... are
mutually exclusive, P(s;) the a priori probability of state s; and P(r | s;) the conditional probability of an event
r, if state s; stands. Then the a posteriori probability P(s; | r) of state s; , if event r happens, is given by

P(s.) P(rls) M

P(s,|r) = ZP(Si) P(rls,)

Therefore changing from a priori to a posteriori probabilities corresponds to the changing of the knowledge
due to the occurrence of event r.

Representation of knowledge

Assuming total absence of information, the vulnerability function may be any function subjected to the
restriction of being a non-decreasing function, since it seems reasonable that an increasing in the loads will
correspond to an increasing in the load effects. Since, from a practical viewpoint, it doesn’t make sense to
find the “true” vulnerability function, the first step consists in generating a number of functions which,
according to Duarte, (1991), is finite. One of the functions in this set will match the “true” vulnerability
function under an appropriate norm.

The robustness of the final estimates will depend on the qualities of the functions contained in this set. To
control the robustness two partial sets are selected (Duarte, 1991). The first one is constituted by analytical
functions expressed as

¢ = ah+pBh’ +yh’ @)

with appropriate values of o, B and y being chosen to generate the selected number of functions. The second
partial set is composed by realisations of discrete Markov processes where the value c; of the control variable,
corresponding to a value h; of the load intensity, is given by

c,=(1+dx)c,, ?3)

with & constant and x a random variable uniformly distributed in the interval [0, 1]. This discrete functions are
transformed into continuous functions by linear interpolation on a bi-logarithmic plot. The values of & are
selected to generate a partial set with the target characteristics. Results obtained by considering separately the
partial sets allow the evaluation of the robustness. The set of functions is probabilised by associating to each
function V; a probability value p;. Those probabilities must obey to the condition £ p;= 1. Each set of values p
= {p1, P2 , D3 ....}T represents a state of knowledge. There is a good state of knowledge when all the
functions in the set are associated to very small probabilities with exception of those ones which are close to
the “true” vulnerability function.

As above referred, at the beginning the state of knowledge is non-informative, represented by a constant
probability density in a logarithmic scale, i.e., the probability of the probability of failure lying in the interval
(107, 10™) is equal to the probability of it lying in the interval (10 # 107, and similarly for the other similar
intervals. Values of p; may be easily computed to ensure approximately a non-informative distribution. The



uncertainty associated to each state of knowledge may be quantified by the ratio between the 5% and the 95%
fractiles of the probability distribution of the probability of failure.

Bavesian analysis

When a non-linear computation is performed, the value of the control variable is just an estimate of the “true”
value of the vulnerability function, since earthquake actions are idealised by a stochastic model. However,
several realisations (time histories of acceleration) of the stochastic process may be used and, consequently, a
sample of values of the control variables is obtained and the sample mean value obviously is a better estimate
of the “true” value of the vulnerability function.

The influence of the sample size constitutes an important issue but, according to Duarte, (1991) and Bairrdo
et al. (1995) the sample mean value approximately follows a gaussian distribution with a mean value equal to
the mean value of the response to one realisation and a variance equal to the variance of the response to one
realisation divided by the number of elements in the sample. Several past studies (Vaz, 1992, 1994 and 1995)
have shown that variance may be assumed to correspond to a coefficient of variation c.o.v.=0.3.

Therefore it is possible to compute the conditional probability P(c |Vi(h)) of obtaining a mean value ¢ of the
control variable, if function V;(h) is the “true” vulnerability function, by

c.ov? Vf(h)j
n

P(c|Vi(h)) = G(V; (), )

where G( , 6°) represents a gaussian distribution with mean value p and variance o® and n is the number of
realisations. This result allows the computation of the a posteriori probabilities P(Vi(h) | ¢) such that

P(V,(h) P(c|Vi(h)) )

V.(h)|c) =
P(V,(h)|c) ZP(VI(h))P(Clvl(h))

which represent a new state of knowledge with a new value of the probabilities associated to each function in
the set p; = P(Vi(h) | c).

Preposteriori analysis

The value h of the intensity of earthquake vibration to be used in the non-linear computations may be selected
to provide an optimal increase in knowledge through a preposteriori analysis. This basically consists in a
probabilistic evaluation for a large number of h values whose change in the state of knowledge is expectable if
the computations are performed for that value. This evaluation is carried out by computing for each value the
5% and 95% fractiles of the probability distribution of obtaining a value of the response, as may be computed
from the probabilities p; of the functions in the set, for each intensity. The optimal increase in the state of
knowledge will correspond to the minimum value of the ratio between the 5% and 95% fractiles, the
corresponding value of h being selected to perform the next series of non-linear analysis.

STRATEGY OF ANALYSIS

Bridge description

The bridge to be analysed is a regular bridge structure with 3 piers, with 50 m long spans making a total
length of 200 m. The piers have hollow circular section with diameter 3.0 m and thickness 0.40 m. Lateral
piers are 14 m high and the height of the central pier is 21 m. Piers have been assumed to be built in on the
deck and on the foundations. Longitudinal displacements are free in all cases; however at the abutments it was



assumed that transverse displacements to the bridge longitudinal axes are restrained. The general layout of the
bridge and the typical deck section are schematically shown in Figure 1.
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Figure 1 - General layout of the bridge.
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The first step in the analysis consisted on the dynamic characterisation of the structure, i.e., on the
computation of natural frequencies and corresponding mode shapes. Fundamental frequencies in the
longitudinal and transverse directions are respectively = 1.38 Hz and fr= 0.89 Hz.

The seismic response was computed considering the response spectrum for soil condition B, as prescribed at
the Eurocode 8 (EC8, 1994) assuming a peak ground acceleration of 150 cn/s>. An uniform value for modal
damping {=5% was assumed. The longitudinal and transverse amounts of reinforcement in each critical
section were obtained by combining the internal forces due to earthquake action with those resulting from the
other actions (namely, dead loads and temperature), considering a value of the behaviour coefficient q=1.5
and a safety coefficient yz=1.0. The prescriptions of the Portuguese Code for Reinforced and Prestressed
Concrete Structures (REBAP, 1983),which is very similar to Eurocode 2 (EC2, 1991), have been considered.

Numerical models

The bridge structure was idealised by a spatial model with beam elements with 6 degrees of freedom per
node. The weight of the deck is distributed along the span length, resulting an axial force of about 10000 kN
at the top of each pier. It should be noted that the structural model used in the linear and non-linear analyses
of the bridge is the same.

In what concerns the non-linear analyses, the main assumption is that the deck will behave as linear elastic and
that the critical zones are located at the piers' extremities. In consequence, it was assumed that the energy
dissipation mechanism is constituted by hysteretic hinges at the bottom of the piers. These hinges are
represented by non-linear beam finite elements with a length equal to the equivalent plastic hinge length,
which is estimated on the basis of the results presented by Priestley et al. (1984); in this particular study
lengths of 1.5 m have been estimated for the plastic hinges at the bottom of the piers. The non-linear
behaviour at the potential plastic hinges is quantified by moment versus curvature relationships determined by
a fibre model. This model involves the discretization of the critical sections in a number of concrete
"filaments" with uniaxial behaviour, the steel bars being considered one by one. The force versus deformation
loops for steel are based on the model proposed by Giuffré et al. (1970), whereas for the concrete the model
proposed by Kent et al. (1971) has been adopted.

Earthquake input and development of the analysis

Earthquake input consists of 5 sets of artificial accelerograms, constructed to match the design spectrum.
Those accelerograms have a duration of 10 seconds, one of the accelerograms considered being shown in



Figure 2. Each set of accelerograms is constituted by 3 different accelerograms, corresponding to global X, Y
and Z directions. With those sets of accelerograms a series of nonlinear analyses was performed, with the
intensities (represented by the peak ground acceleration) ranging from 0.5 m/s” to 10 m/s’, by appropriately
scaling the accelerograms. For each intensity a “new” (undamaged) model is considered and the results of
those analyses allowed the direct computation of the “true” vulnerability function of the structure (Vaz, 1996)
and hence its probability of failure. For further reference this will be called “reference case”.
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Figure 2 - Sample accelerogram matching EC8 response spectrum (Soil B condition).

The methodology adopted in the reference case is not useful when considering the experimental testing of
models until collapse since it requires a considerable number of models and, in general, the number of models
available is limited due to their high cost. In an extreme situation of having just one model available, the
important issue is to define the testing strategy so that the maximum information can be retained, i.e., what
should be the optimal increase of shaking intensity. In fact, the option for very small increments of the
intensity probably will cause a premature damage of the model when the relevant intensities are reached; on
the other hand, very large increments can lead to misrepresentative information, in the sense that the relevant
intensities are overpassed.

Let o be the ratio between the intensities of 2 consecutive experiments on the same model. In this study
values a=1.2, o=1.44 (1.2%) and o=1.728 (1.2°) have been considered, regarding 3 different models to be
tested with different strategies. Assuming that for each model the starting intensity corresponds to a peak
ground acceleration a;=1 m/s’, each one of these models will be tested considering the following intensities:
1.0, 1.2, 1.44, ... m/s* for the model with a=1.2, 1.0, 1.44, 1.44%, ... m/s® for the model with a=1.44 and
1.0, 1.728, 1.728% ... m/s? for the model with =1.728.

For each model, at the beginning of the test for a given intensity, the damage sustained by the model in the
tests previously performed for lower intensities must be considered. This condition can be numerically fulfilled
by remaking the analysis from the beginning and separating the scaled accelerograms corresponding to the
different previous intensities with “blanks” of appropriate duration (in this study a time of 5 seconds was
selected). Those gaps correspond to free vibrations of the structure and their duration is selected so that its
amplitude at the beginning of the test for the current intensity is small, when compared with the maximum
values of the response. This means that the duration of the analyses increases as far as higher intensities are
considered. To illustrate this procedure the accelerogram corresponding to the fifth intensity analysis of the
model tested with a=1.728 is shown in Figure 3.
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Figure 3 - Accelerogram corresponding to the Sth test (a=1.728).

RESULTS

Due to the high computational effort required by this type of procedure the preposteriori analysis above
referred can play a fundamental role. In fact, particularly for low values of o, it allows a significant saving in
the amount of computations because, taking into account the aims of the study, analyses need not to be
performed for all the values of the intensity.

Assuming that the optimal value of o can be found considering both the estimate of the probability of failure
(to be compared with that one corresponding to the reference case) and the 90% confidence interval, the
relevant quantities to be controlled are the mean value of the probability distribution of the probability of
failure and the corresponding values of the 5% and 95% fractiles.

The variation of the estimates of those quantities for the different values of a considered in this study are
shown in Figures 4 to 6. From those figures fast convergence is evident. It should be noted that in those
figures consecutive iterations do not correspond to consecutive (and increasing) values of the intensity but to
the intensities “foreseen” as more informative according to the preposteriori analysis above referred.

The values of the mean value and for the 5% and 95% fractiles of the probability distribution of the
probability of failure for the analyses performed are presented in Table 1 and shown in Figure 7.

Table 1 - Mean value and 90% confidence interval of the estimates of the probability distribution of the
probability of failure for the different test strategies

Fractile Reference case a=1.2 o=1.44 o=1.728
95% 7.67x 107 470x10°¢ 245x10°¢ 192x10°
50% 1.04x 107 301x10°° 230x107° 9.75x 107

5% 808x 107 298x 10 1.98x107 331x10°
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Figure 4 - Convergence of mean value and 5% and Figure 6 - Convergence of mean value and 5% and
95% fractiles of the probability distribution of the 95% fractiles of the probability distribution of the
probability of failure for the model tested with probability of failure for the model tested with
o=1.2. a=1.728.
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Figure 5 - Convergence of mean value and 5% and Figure 7 - Probabilities of failure obtained by
95% fractiles of the probability distribution of the numerical testing with a geometric progression of
probability of failure for the model tested with intensities with common ratio o.

o=1.44.



CONCLUSIONS

In this paper a methodology aiming at the establishment of optimal shaking table testing strategies of bridge
models was presented. This methodology is based on the Bayes theorem and was developed with the
objective of optimising the information obtained from tests until the collapse.

For the bridge under study, the adoption of a=1.728 seems to be the optimal procedure since a good estimate
of the probability of failure (regarding the reference case) is obtained with the lowest uncertainty. The extent
of this kind of analysis is still very limited but the continuous increasing in the computational power makes
possible to hope that this kind of procedure can be used case by case in a near future.
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