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ABSTRACT

A numerical method is presented for determining the ground surface displacement induced by a vertical
sinusoidal force on a three—~dimensional layered elastic half-space. The contribution of the residue of the
Rayleigh poles and the branch line integrals, i.e., that of Rayleigh and body waves, to the ground displace—
ment is computed for two-layered and four-layered media. Its variation with S-wave velocity ratio of a
two-layered medium, V_/V .» 18 examined. It is shown that, when V,/V, 18 less than 1.5 or when
V,/V, 1s greater than 1.¥and"the normalized frequency is less than 1, Rayieig% waves get to dominate as
the normalized distance is greater than 3-4. When V,/V is greater than 1.5 and normalized frequency is
closc to 1, body waves dominate up to a normalized distance of 100. The reason for this is found to be due
to an extraordinary attenuation characteristics of body waves near the natural frequency of the medium. If a
stiff surface layer overlying a soft layer, body waves also dominate in a high frequency range.
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INTRODUCTION

After the pioneer work by Lamb (1904), Lamb's problem has been applied to the field of scismology. A
vertical point force acting on the ground surface generates body and Rayleigh waves. The rigorous solution
of the ground surfacc displacement is expressed as a sum of the branch line integrals and the residue of Ray—
leigh poles. The former corresponds to the contribution of body waves and the latter to that of Rayleigh
waves. To evaluate the residue of Rayleigh poles is comparatively simple, while to cvaluate the branch linc
integrals is complex. Thercfore, Harkrider (1964) proposed "normal mode solution" in which the displace—
ment is expressed as a sum of residuc of Rayleigh poles only, neglecting the branch line integrals.

For a vertically oscillating source on the surface of a homogeneous, isotropic, elastic half space, Miller and
Pursey (1955) showed that two thirds of the total energy goes to Rayleigh waves, while the remaining goes
to body waves. In addition, the surface waves attenuate with a square root of distance, whereas the body
wavcs attenuate with a squarc of distance along the surface (Ewing et al, 1957). Thus, Rayleigh waves
become an order of magnitude greater than that of body waves if the distance from the source exceeds three
times the wavelength (Saito, 1993).

In the casc of a layered medium, however, most of methods for solving the ground surface displacement
(c.g., Bouchon and Aki, 1977; Tajimi, 1980; Luco and Apscl, 1983) cannot distinguish body waves from
Rayleigh waves. Therefore, it remains uncertain whether the body waves arc actually neglected in a layered
medium.



The objcct of this paper is to outline an analytical solution in which displacements of body and Rayleigh
waves are scparatcly determined, and to discuss whether the body waves are actually neglected in a layered
medium.

THEORETICAL SOLUTIONS

Tokimatsu and Tamura (1995) presented an analytical solution of the ground surface displacement, of

which outline is bricfly described. The model considered consists of (N-1) layers overlying a half spacc as

shown in Fig. la. Each layer is homogeneous, isotropic, and clastic. = A vertical harmonic point source,
P exp(-imt), is assumed to be located on the ground surface of the z—axis as shown in Fig. 1b. Based on the

d()mpound Matrix method (Saito and Kabasawa, 1993), such vertical and horizontal displacements, w and
, are defined by the wavenumber mtegrdl cquatlons in the form
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in which i= v-1; k is the wavenumber;  is the circular frequency; cis phase velocity (c=w/k); ris dis—
tance from the source; Y,,, Y,,, and Y,, are variables in the Compound Matrix method; Y,, is equivalent to
the characteristic cqudtlon for Raylc1g waves; and Y,,/Y,, and Y,,/Y,, arc given by
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in which J,; is the element of the matrix J defined by Haskell (1953). A potential difficulty in solving the

above mtegrals is the presence of zero's of the denominator of the integrands. Based on the contour integra—
tion in a complex wavenumber plain shown in Fig. 2, Eqgs. (1) and (2) can be rewritten as
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wavenumber plane for Egs. (1) and (2)



in which H " and H," are Hankel functions of the first kind of the order zero and one; k_ is the wavenum-—
ber of the mth mode; and subscripts + and - indicate that v _ and V, defined by the followmg equations are
positive and ncgative along the path of branch linc 1ntcgrat10n

V= k- 0PIV )
Vﬁz - K- szszN (8)

In cach of Egs. (5) and (6), the first term, w_or u,, corresponds to the contribution to the displacement of the
residue of Rayleigh poles, i.e., the normal mode Solution (Harkrider, 1964), and the second and third terms,

w, and u,, w_and u corrcspond to the branch line integrals along the real and imaginary axes, respec-
tively. Y, /Y "and Y, /Y ,, in the second term of Egs. (5) and (6), have the following relations:
Yl4+ = (Y14- w
Y24+ k Y24-. } (9)
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where * denotes complex conjugate. Y,,/Y,, and Y ,/Y,, in the third term of Egs. (5) and (6), have the
following relations:
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Substituting Eq. (9) into the second term of Eq. (5) yields
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in which Im indicates the imaginary part of a complex number. Substituting Eq. (11) into the third term of
Eq. (5) yields
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in which Re indicates the real part of a complex number. Replacing k by ik in Eq. (14) leads to
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where K|, is Bessel function of the second kind of order zero. The vertical displacement is then expressed as
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Similarly, substitution of Eqgs. (10) and (12) into Eq. (16) yields the horizontal displacement defined as
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where K| is Bessel function of the second kind of order one. In each of Eqs. (16) and (17), the first term
corresponds to the amplitude of Rayleigh waves, w_or u, and the second and third terms to the amplitude of
body waves, w, or u,. The ground dlspldCCHlCIltb cxpresscd by Egs. (16) and (17) can be numerically deter—
mined. It has been confirmed that the displacecments computed by the present method agree with those
presented by Saito (1993) for a half space.



CONTRIBUTION OF BODY AND RAYLEIGH WAVES TO GROUND DISPLACEMENT

Single Layer Overlaying an Elastic Half Space

The effects of various factors on the contribution of body and Rayleigh waves to the ground displacement
are examined for two-layer models listed in Table 1. The factors considercd include the distance from the
source normalized by the wavelength of the fundamental Rayleigh mode; the frequency normalized by the

Table 1. Soil layer models

Layer Thickness Density Ve Vs
No. Model A Model B Model C Model D
1 H P 3 Vs V sa
2 - P 3Vs:z 1.2 Vst 1.5 Vs 3 Vs 6V s
100 100
(a) Model A (Vso/Vsi=1 .2) 1?2%’%5«0 (a) Mode! A (Vs2/Vsi=1 .2) 1?2&;H:<10
] 1SW/We<3 1=U/Us<3
] 1/35W/We<T 2 1/3<U,/U06<0
4 1/10SW/Wo<1/3 /105U /Us<1/3
We/Wb<1/10 10 U /Us<1/10

r/ Ao

(b) Model B (Vsz/Vsi=1.5) (b) Mode!l B (Vs/Vsi=1.5)

(c) Model C
(Vs2/Vsi=3)

(¢) Model C .
(Vs2/V51=3)

(d) Model D
(Vs2/Vs1=6)

(d) Nodel D
(Vs2/Vs1=6)
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Fig. 3. Vertical amplitude ratios between body and  Fig. 4. Horizontal amplitude ratios between body and
Rayleigh waves with respect to dimensionless fre— Rayleigh waves with respect to dimensionless fre—
quency, dimensionless distance, and V,/V, quency, dimensionless distance, and V,/V,



natural frequency, f/f,, where f,=4H/V ; and S-wave ratio between the surface layer and the half space,
Vg,/Vg,- Figs. 3 and 4 show the amplltude ratio between body and Rayleigh waves with respect to dlmcn—
sionless frequency and dimensionless distance, for vertical and horizontal components. When V,/V(,

less than 1.5 or the normalized frequency is much less than 1, Rayleigh waves become one order of mdgm—
tude greater than that of body waves as the normalized distance is greater than 3—4. This is analogous to the
characteristics of the propagating waves over a half space (Saito, 1993). In other cases, however, the trends
are diffcrent. If V,/V, is greater than 1.5 and the normalized frequency is much more than 1, Rayleigh
waves tend to dominate at closer source—to—sensor distance as the value of S—wave velocity ratio increases.
If V,/V, is greater than 1.5 and the normalized frequency is close to 1, body waves dominate up to a

n()rmdllzcd distance of 100.

To investigatc why the body waves dominate at larger source t() -sensor distance near the natural frequency,
the dimensionless displacements, |w |, |w_ |, and | w,_ |, normalized by Pk/(p\/ 2H), are plotted in
Fig.5 against dimcnsionless distancc at f/f =0.2,1,5 f()r NY()dcl C. Att/f,=0.2, 5, as 1s the casec of a hdlf
space, Rayleigh waves attenuate in pr()portlon to r’”2 while body waves attenuate in proportion to 1~
However, at f/f =1, body waves do not attenuate in proportion to 1~ 2, but show attecnuation characteristics
similar to Rdylmgh waves, i.c., in proportion to r2. In addltlon the bod) wave amplitude near the source
is larger than that of Raylc1gh waves. For this reason, If V , 1s greater than 1.5 and normalized frequen—
cy is close to 1, body waves dominate up to a normdhze(i distance of 100. In this case, the normal mode
solution cannot work well. In other cases, the normal mode solution can work well, on the condition that the
normalized distance is greater than 3—4.
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Fig. 5. Dimensionless displacement plotted against dimensionless distance with respect to f/f, for Model C
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Fig. 6. Dimensionless displacement plotted against dimensionless frequency for Model C



In order to explain why the body waves attenuate in proportion to r2 at f/f;=1, the dimensionless vertical
displacement, w, w_and w,, arc shown in Fig. 6a against dimensionless frequency for Model C. Fig. 6b
shows the dimensionless displacement of the fundamental mode and the first higher mode Rayleigh waves,
w,and w_, and that of body waves. At f/f =1.2, the amplitude of Rayleigh waves become a local mini-
mum and that of body waves become a local maximum (Fig. 6a). However the amplitude of w changes
smoothly at that frequency. The first higher mode is cut off at f/f =1.2 (Fig. 6b), where the amplitude of
the first higher mode coincides with that of body wave. Thesc findings suggest that the characteristics of
Rayleigh and body waves are closely related with each other, when the normalized frequency is closed to 1.
Thus, body wave shows attenuation characteristics similar to that of Rayleigh waves.

Multiple Layer Overlying an Elastic Half Space

The cffects of presence of a stiff layer in a deposit on the propagation of body and Rayleigh waves arc
cxamined for four—layer models listed in Table 2. The stiffness of soil layers increases with depth in Model

Table 2. Soil layer models

Layer Thickness Density Ve Vs (m/s)
No. H(m) P Mgm®) (m/s) Model A Model B Model C
1 2 1.8 360 80 180 80
2 4 1.8 1000 120 120 180
3 8 1.8 1400 180 180 120
4 - 1.8 1400 360 360 360
100 100 105U/U
(a) Model A 1%&% 10 (a) Model A ?2&%{2}, 0
1/3ZWe /W1 7 1/350,/06<
1/710SWr /We< 173 e 1/10=U:./Ue<1/3
10 We/Ws<1/10 10 Ur/Ue<1/10
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Fig. 7. Vertical amplitude ratios between body Fig. 8. Horizontal amplitude ratios between body
and Rayleigh waves with respect to frequency, and Rayleigh waves with respect to frequency,

dimensionless distance dimensionless distance
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Fig. 9. Displacement plotted against dimensionless distance with respect to Model A-C for a force of 1kN

A, while the stiffness varies irregularly with depth in Models B and C; a stiff surface layer overlies a soft
layer in Model B, and a stiff layer is sandwiched between soft layers in Model C. Figs.7 and 8 show the
amplitude ratios between body and Rayleigh waves for vertical and horizontal components. The amplitude
ratios between body and Rayleigh waves in Models A and C, show a trend similar to those of Models C and
D shown in Figs. 3 and 4. By contrast, in the frequency range higher than 30Hz of Model B, Rayleigh
waves dominate only when the normalized distance becomes greater than about 20.

In order to cxplain the above tendency, the vertical displacements of body and Rayleigh waves at 35Hz are
shown in Fig. 9 against normalized frequency. In the case of Models A and C, Rayleigh waves amplitude
near the source (1/A;=0.1) is 20-30 times that of body waves. By contrast, in the casc of Model B, Ray-
leigh waves amplitude near the source is only 4 times that of body waves. Thus, in the case of Model B,
Rayleigh waves dominatc only when the normalized distance is greater than about 20.

CONCLUSIONS

A numerical method is presented for determining the ground surface displacement induced by a vertical
sinusoidal force on a threc—dimensional layered elastic half-space. The contribution of the residue of the
Rayleigh poles and the branch line integrals, i.e., that of Rayleigh and body waves, to the ground displace-
ment is computed and examined for two-layered and four-layered media.

In the casc of a two—layered model:

1. When S—wave velocity ratio between the surface and base layers is less than 1.5 or when S—wave veloci-
ty ratio is greater than 1.5 and the normalized frequency is much less than 1, Rayleigh waves become one
order of magnitude greater than that of body waves as the normalized distance is greater than 3-4. This is
analogous to the characteristics of the propagating waves over a half space.

2. When S—-wave velocity ratio between the surface and base layers is greater than 1.5 and the normalized
frequency is much more than 1, Rayleigh waves tend to dominate at closer source—to—sensor distance, as the
value of S—wavc velocity ratio increascs.

3. When S-wave velocity ratio between the surface and basce layers is greater than 1.5 and the normalized
frequency is close to 1, body waves dominate up to a normalized distance of 100. The reason for this is
found to be duc to an extraordinary attenuation characteristics of body waves at the natural frequency.

In the case of a four—layered model:
4. When a stiff surface layer overlying soft layer, Rayleigh waves in a high frequency range, dominate only
when the normalized distance is greater than about 20).
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