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ABSTRACT

We have developed a hybrid method of Kalman filter and kriging techniques with which the stochastic waves in
a time-space random field are simulated sequentially by adopting observed waves. Many methods have been
proposed for the simulation of stochastic waves involving deterministic time functions. The proposed procedure
here simulates waves at arbitrary points in accordance with the observed waves specified at one or more points.
The developed method is an on-line hybrid estimation technique which satisfies the given covariance function of
both time and space field. We have theoretically shown that the simulated waves satisfy the characteristics of the

given random field.
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INTRODUCTION

Seismic ground motions are a function of time and space. The fundamental step for assessing the scale of
disaster or the damage to structures in an area is to estimate the seismic ground motions. The procedure available
for determining the spatial distribution of input motions in an area are classified into three methods. The first
uses observed records directly as possible invariant realizations in the area. This method is inadequate when the
number of observed data are limited. The second is to interpolate the available data and estimate the optimal
values by introducing a mathematical model of random field. The third is the conditional simulations, which
simulate sample fields conditioned by observed data at discrete points. Many discussions and studies have been
published, the results are very useful for the construction of disaster prevention strategy.

Recently major earthquake disasters occurred in large urban areas in the USA and JAPAN. Those are the 1994
Northridge earthquake and the 1995 Southern Hyogo earthquake. Many countermeasures against earthquake
disasters were planned and implemented. As the disaster is the outcome in the of human social system into
which the earthquake affects, we have to know input ground motions first. A seismic input evaluation system
is an example. An adequate number of seismograms in the area are arranged and the spatial distribution of
seismic severity is immediately evaluated, the purpose of which is different from the array observations installed
so far. This is a subsystem of the earthquake information system for emergency response just after the

earthquake.

In Japan, the Japan Meteorological Agency has increased its seismographs in accordance with the change of the
definition of seismic intensities. It changed the measuring process from an experimental way to mechanical
measurement. The Science Technology Agency has also decided to install a thousand of seismographs and to



make the network widespread all over the nation. The information obtained from the network is collected and
disseminated by a management center. Although the seismic observation networks are arranged more densely
than in the past, the number of installed equipment is not enough when we evaluate the spatial distribution of
seismic ground motions especially for small municipalities. In order to cover information of the area with less
observations, we have to develop a method to estimate the ground motion at an arbitrary point in the area.

Many methods from a simple interpolation to a probabilistic approach are proposed in order to estimate the
ground motion. Conditional simulation, which simulates waves at an arbitrary points in accordance with the
observation waves, is one of the probabilistic approaches and a useful tool to provide important information. In
this method, the deterministic time functions are involved in simulated waves as realizations of a random field.
Kawakami (1989) proposed the method to simulate conditional waves which satisfy the given correlation
function by using the double Fourier series expansion and optimization techniques. He also proposed the
methods according to the multi-variable stochastic process and multi-variable AR model (1992, 1994). Kameda
et al. (1992) developed analytical conditional simulation technique based on the conditional density function for
the Fourier coefficients in frequency domain. Kriging technique is applied in order to incorporate the
observations with the simple manner. Suzuki (1988), Kiyono et al. (1989) applied this technique to the spatial
interpolation of the soil properties and physical factors of ground motion in the field of soil mechanics and
earthquake engineering. Vanmark et al. (1991) interpolated the time histories of earthquake array observation by
the use of kriging and Monte Carlo simulation techniques. Kiyono et al. (1992, 1995a) simulated the waves of
inhomogeneous field such as the ground with irregular interfaces. Hoshiya (1993) investigated a conditional
simulation method which has a step by step expansion procedure. Maruyama et al. (1993) dealt with the wave
propagation problem according to above Hoshiya's formulation and simulated the sample waves of the
conditional random field. Noda et al. (1994) has extended the conditional estimation problem for the Gaussian
random field to that for non-Gaussian random field.

The purpose of this study is to simulate the conditional stochastic waves at an arbitrary point which satisfies the
characteristics of the given stochastic field. The kriging and Kalman filter techniques are adopted because the
estimation error covariances for both techniques are identical. According to the developed procedure, we can
carry out the on-line estimation of stochastic waves. The wave at an arbitrary point can be calculated as soon as
the waves are observed at the other fixed points. The Kalman filter technique has a time update algorithm and a
measurement update algorithm, but the kriging technique does not have the time update algorithm. We here
developed a hybrid method in which the kriging equation is incorporated into the state transition process of the
Kalman filter. The correlation function is derived from a linear differential equation and has an exponential
form. The important aspect of the developed procedure is that the real-time estimations of the waves become
possible because the estimates are obtained sequentially as the algorithm is executed in every time step.

KALMAN FILTER AND KRIGING

Kalman Filter

Kalman filter technique, a method that updates the estimated value at each time step by incorporating new
observation data, is used in this procedure. As the Kalman filter processes data sequentially, based on
orthogonal projection and minimum error criteria, it needs the dynamic characteristics of a linear filter, the
stochastic characteristics of noise, a priori information about the initial values, and observed data given
sequentially.

Consider the signal generation and observation processes written as a discrete linear system;

Uy = Pyt + Gwy ¢))
Yi=Mauy, +v, 2

in which uy is the state vector at kAt (At the sampling interval), yx the observation vector at k; F the state
transition matrix; M the measurement matrix; and G the system noise matrix. w and v are the Gaussian system
noise and observation noise vectors with zero mean values
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in which E represents the expectation and 3y, Kronecker's delta; Ry, and S, the symmetric and positive definite
matrices. If the governing equations are transformed to Eqgs. (1) and (2) by the appropriate modeling, the
problem can be solved by use of the Kalman filter algorithm.

Kriging

When we deal with a time-series process (stochastic process), it often is assumed to be stationary and ergodic.
In addition, the mean often is assumed to be zero, and measurements are numerous and equi-spaced in time. If
the spatial random field is assumed to be stationary, we can estimate its value at an arbitrary point using the mean
and the spatial covariance function.

The realization of random field, z(x), is idealized as the sum of two basic contributions; a deterministic
component representing the expectation of z(x), m(x), and a stochastic component with zero mean, u(x).

2(x) = m(x) + u(x) 4)
in which x is a position vector. In case of considering a problem for the seismic ground motion, the expectation
of z(x) is assumed to be zero. Thus the observed value at a fixed point x; (i=1,---, n) is u(x;). When the

observed value, u(x;), is given, the linear estimator, u*(x,), at a fixed but arbitrary point, x;, is considered to be
a weighted average of n available data.

u*(x) = i; A u(x) (5)
in which A; (i=1,2,...,n) is the weighted coefficient which satisfies the equation, ZA;=1.

Calculating A; by minimizing the estimation error covariance and substituting it into Eq.(5), we get a linear
optimal estimation, u*(x;). The estimation error is written as

o*(x) = Elu(x)] - £ AClutx), u(xy)] 6)

In the procedure, the estimation error becomes zero when the estimated point, xs, coincides with the sample
point, x;. The optimal estimator, therefore, exactly coincides with the observed value.

Kalman Filter and Kriging

Consider a state vector, u, without a trend component (m(x) in Eq.[4])
u = (u"(x), u(x))" (7)

in which u(x;) is the state vector at an observation point, x;, and u(x;) the state vector of an estimated point, x,.
In the kriging technique used here, the mean value of which is assumed to be known (=0). The estimation
error covariance matrix is

El{u—u*}{u-w)7=[3 3] (8)

in which

P= st - QsiQii_‘Qis (9)
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Fig. 1. Covariance function assumed. X-axis is Fig. 2. Assumed observed waves which satisfy
the time difference and y-axis the distance the given covariance function.
between two points.
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Fig. 3. (a) Covariance function of a sample wave
(b) Ensemble average of covariance function (20 waves)

and where Q;;i , Q;s , Qs and Qg are the covariance matrices for u(x;) and u(xs). This covariance matrix
coincides with that of measurement update algorithm in Kalman filter.

st = Pk+l|k
Q= Pk+lIkMI+I
Qi =My P (10)

Qi =M, P My, + S,

This means, if we incorporate the estimated unknown values into the state vector in Eq.(7) and calculate
estimation error covariance, the calculated error covariance coincides with the kriging error covariance.

CONDITIONAL SIMULATION OF STOCHASTIC FIELD

Stochastic Waves
Suppose the stochastic differential equation;

0 = au + by (11)
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Fig. 4. Estimated input white noise Fig. 5. Interpolated waves by kriging technique.

in which u is a state variable that is driven by the white noise, 7, coefficients a and b are the parameters which
govern the stochastic field. The discretized equation of Eq. (11) is

uy = Puy_ + by YA (12)

The state variable which satisfies the above equation has the following covariance function
cry=—L e (13)
T 2a

As we consider the covariance function which decreases as the time difference and the distance between two
points increase, the corresponding exponential function is given as

T="T + Tj (14)
Ty =l (15)

in which vy is the velocity and its value is assumed 1000m/sec. In this study, the parameters, a and b in Eq.
(11), which govern the stochastic field is known, and their values are -2 and 2 respectively. The covariance
function for Eq.(13) is shown in Fig. 1 X-axis denotes the time lag, T;, and y-axis the distance between the
point i and j, xij. The covariance functions are plotted for a time lag range of Osec <7< 5sec and a distance range
of 0m < x,<800m. The function is decreasing exponentially along both axes. Sample waves that satisfy the given
time-space correlation (Eqs. [13], [14] and [15]) is simulated by using Eq. (12) (Fig. 2). We assume these
sample waves as observed waves for the simulation of stochastic waves. In Fig. 2, the observed waves are
given in three points (100, 500 and 900m) and the others (200, 300, 400, 600, 700 and 800m) are of the

estimated points.

The covariance function for sample waves and the ensemble average of covariance function for 20 sample waves
are shown in Fig. 3 (a) and (b). The ensemble average approximates the assumed covariance function. The

input white noise, v, in Eq.(11) is generally unknown. But if the parameters which control a random field are
known, we can identify the input motion. We calculated the input white noise by using the Kalman error filter
(Toki et al., 1992). The result is shown in Fig. 4

Hybrid Method of Kalman Filter and Kriging Techniques

Interpolated waves by the kriging technique are shown in Fig. 5. The value at t+1 for the estimated point is
computed by the linear combinations of the values of the observation points at t. As the estimator is provided
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Fig. 6. (a) Waves obtained by factorizing the estimation error covariance
(b) Synthesized waves by adding the waves in (a) to the kriged waves

according to the criteria of minimizing the estimation variance, the kriged waves do not always have the
characteristics of the given stochastic field.

Consider the state and the measurement equations of Kalman filter

“k=[:{,g]“k_1 +{g}7k—-l (16)

Ye=[10]Ju +v, (17)

in which u consists of known and unknown state variables shown in Eq. (7); A the matrix of which components
are weighted kriging coefficients, A;; v the measurement noise but does not exist in this study.

The estimation error covariance for Kalman filter algorithm coincides with that for kriging technique. The
calculated estimation error covariance matrix, P, which is updated at every measurement, is factorized as

follows. The generated wave, u®, that satisfies the estimation error variance is added to the kriged wave, uy.

P=L-L" (18)
ug = Ly, (19)
u(x,) = w(x,) + u§(x,) (20)

in which y is a sample noise vector generated by the standard normal distribution density function and u'y is a
synthesized wave. The time histories obtained from the factorized P, and the synthesized waves by adding the
kriged waves and the waves obtained from the factorized P are shown in Fig. 6 (a) and(b), respectively. As the
estimation error covariance matrix is factorized at every time step independently, the simulated waves satisfy
spatial correlations but do not satisfy the correlations in respect to the time. To overcome these defects, we input
the waves shown in Fig. 6 (a) into the govemning equation (Eq. [12]) again and add the obtained waves, uP, to
the kriged waves. Considering the diagonal components of P, or auto-covariance, p, the following equation can
be derived.

E[uPuP] = C(0)E[u‘u®] = C(0) p (A}

in which scalar uP is a component of uP. Therefore when the additional waves are attached, they must be
multiplied by C(0)'1/2. According to the above procedure, Eq. (17) is replaced as

U (%) = u(xg) + uf(x) (22)
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Fig. 7. (a) waves obtained by passing the waves in Fig. 6 (a) through the governing equation
(b) Synthesized waves by adding the waves in (a) to the kriged waves (sample wave 1)
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Fig. 8. Sample waves simulated by the developed procedure;
(a) sample wave 2, (b) sample wave 3

The obtained additional waves and synthesized waves are shown in Fig. 7 (a) and (b). Two more sets of sample
waves are shown in Fig. 8 (a) and (b). The fact that the correlation in time axis obeys the function in Eq.(13) is
proved analytically (Kiyono ef al., 1995b). Hence, the covariance for the simulated waves coincide with the

given function in Eq. (13).

CONCLUSIONS

Our proposed method provides a practical means for simulating stochastic waves by using Kalman filter and

kriging techniques. The procedure developed and conclusions obtained in this study are the following:

1) The estimation error covariance for the kriging technique coincides with that obtained from the Kalman filter
algorithm. Taking this relation into account, the algorithm of conditional simulation is developed by
combining the Kalman filter and kriging techniques with which the stochastic waves in a time-space random
field are simulated sequentially by adopting observed waves.

2) After determining the weighted coefficients by the kriging, these coefficient are incorporated in the state
equation of the Kalman filter and carried out the optimum interpolation of random waves.

3) In the above procedure, we input the waves which satisfy the spatial correlation into the governing equation
again and added the output waves to the kriged waves. The obtained waves satisfied the given time-space
correlation.

4) On the basis of the conditional simulation, we could generate random stochastic waves which satisfy the
given properties of a stochastic random field. By using the developed algorithm, the waves at arbitrary
points can be simulated sequentially as soon as the waves at one or more points are observed.
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