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ABSTRACT

This paper presents the analysis of two dimensional responses of the semi-cylindrical alluvial valley
subjected to incident plane waves. This problem is decomposed into the problems for interior and
exterior regions. In the exterior region the diffracted wave fields are constructed with linear combi-
nations of two independent families of Lamb’s singular solutions, which are the integral solutions for
surface vertical and horizontal line loads with their derivatives up to the order n, are used to represent
this diffracted wave field. The wave fields of interior region are constructed by the similar series but
bounded at the origin. Continuity conditions along the interface between exterior and interior region
are satisfied in the least-square sense.
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INTRODUCTION

Local geological conditions can generate large amplifications and spatial variations of ground motion.
The seismic response of geological inhomogeneities is essential for the aseismic design of important
facilities. Detail understanding of the effects of wave scattering and diffraction through geological
inhomogeneities is of importance for earthquake engineering and strong motion seismology.

The problem of the two-dimensional scattering and diffraction of plane waves by an alluvial valley in an
elastic half-plane has been studied by many investigators. Using an exact series solution, Trifunac(1971)
has studied the surface motion in and around a serni-cylindrical alluvial valley excited by plane SH-
waves. Wong and Trifunac(1974) have solved a similar problem involving alluvial valley of semi-
elliptical shape. Sanchez-Sesma and Esquival(1979) have used the source method to investigate the
scattering and diffraction of SH-waves by an arbitrarily shaped alluvial valley. Dravinski(1983) has
applied the indirect boundary integral method to study the scattering of plane SH-waves by dipping
layers of arbitrary shape. For the problem of incident P and SV waves, the solution becomes more
complicated because of the mixed mode conversion involved. To solve this problem many techniques
have been proposed. Dravinski(1982) has used the source method to analyze the alluvial valley of
arbitrary shape subjected to P waves. Bravo and Sanchez-Sesma(1990) have solved the same problem
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Fig. 1 Semi-cylindrical alluvial valley contained in an clastic half-plane

by applying Treffetz's method, they construct the diffracted and refracted fields by wave functions
satistying the wave equation. Mossessian and Dravinski(1987) have used an indirect boundary integral
equation approach to investigate the diffraction of plane P, SV, and Rayleigh waves by dipping layers
of arbitrary shape. Yeh et al.(1995a,1995b) have used boundary element method to solve the cases of
obliquely incident P, SV, and Rayleigh waves on an alluvial valley of arbitrary shape. Fishman and
Ahmad(1995) have adopted boundary element method to study the influence of valley depth, frequency,
impedance ratio, and incident angle on surface motion of an alluvial valley.

In this work, the method of solution which has been applied by Maunsell(1936) to analyze a classical
edge notched problem in elastostatic will be adpoted and extented to treat dynamic wave propaga-
tion. Analogous to Maunsell approach, two linear independent sets of functions which are n-th order
Lamb’s singular solutions in integral form, which automatically satisfy boundary conditions at hor-
izontal ground surface are developed to represent the diffracted fields. The incoming, outgoing and
standing waves are considered as the same series with the integrals which are integrated along different
paths so that the exterior and interior diffracted ficlds can be described. This method has been applied
to analyze P, SV, and Rayleigh waves diffraction about a semi-cylindrical canyon by Yeh et al.(1995¢).
The numerical results for wave diffraction of a semi-cylindrical alluvial valley subjected to different
types of incident waves with various frequencies and angle will be considered.

STATEMENT OF THE PROBLEM

The geometry of the problem is depicted in Fig. 1. It consists of a homogeneous, isotropic, linearly
elastic semi-cylindrical alluvial valley with domain D, and perfectly bonded to an elastic half-plane D;.
For each region the Lamé constant A and g, and mass density p should be specified. The half-plane is
excited by incident P, SV, and Rayleigh waves with harmonic time dependence of the type e**, where
w is the circular frequency. For simplicity, the factor e™! will be dropped from all expressions. In this
two dimensional model, the displacement, field u is related to the displacement potential in each region

according to
u,~:V¢,»+V><(0,¢i,0) ;1= 1,2 (1)

where ¢; and #; are P and SV wave potential, respectively, which are governed by

Vi + ki =0 (2)
V% + ESp; =0 ; §=1,2 (3)
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Fig. 2 Path of integration in the k-plane, (a) exterior region, (b) interior region

where k,; = w/c,i and ki = w/c,; denote the longitudinal and the transverse wave number, respectively.
¢pi and c¢; denote the longitudinal and the transverse wave speed, respectively, and are defined as

Ai + 2u; )
Cpi = V—p (4)

e = |4 Coi=1,2 (5)

pi

METHOD OF SOLUTION

As the incident wave impinge on the alluvial valley, it is partly reflected back into the half-space and
partly transmitted into the alluival valley through the interface C, hence the total displacement in the

exterior region u', and in the interior region u?, are given by
u' = uwtur ;o reD (6)
ul = u? ; reb, (7

where the superscripts f denote the free wave field, and s;, 7=1,2, denote the scattered wave field.
With the geometry of this problem in mind, a suitable set of functions representing the scattered field
of exterior region must satisfy the free surface conditions and radiation conditions at infinity. Then
the Lamb’s solution for surface vertical and horizontal line loading and their derivatives with respect
to horizontal coordinate z up to order n (n is arbitrary positive integer) satisfy the required conditions
mentioned above, thus, the scattered displacement field for exterior region D, can be written as

N N
u = ZO Azuiy + 2_:0 B,llu?:l_) (8)

where “E}:z) and uz‘L) are the n-th order derivatives of Lamb’s singular solution due to vertical surface

line loading and horizontal surface line loading, respectively. Al and B! are the unknown coefficients
which can be determined from interface conditions, and N is the order of approximations.

The integral representation of the displacement of Lamb’s singular solution due to surface line loading
with magnitude ¢} has the form

s Q . s1 _—112 5, —vlzy _—ikx
Wy = g L GRCEE™ 4 D2 e i0) e 9)
why = 2 [ (G kD e (10)
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where sy = vy or hy and vy = \/k? — k2, v] = \/k? — k2.

For sy = vy (vertical surface line load)

k2
cH = ke "___s 11
n ( ¢ ) F](k) ( )
=20k
D = (—k)" 12
D= (R (12)
Fi(k) = (2K — k4)* — 4k 0
and for s; = h; (horizontal surface line load)
2ikv,
o = (—ik ! 13
A A 13)
2k* — k2
5 _ AL s1
DY = (-ik) TRk (14)

The integral of eqn(9) and (10) are integrated along the path I'; in the k-plane and shown in Fig. 2(a).
The scattered field of interior region must satisfy the free surface conditions and bounded at the origin,
thus, the integral representation of scattered displacement field for the interior region has the similar
integrand as those for the exterior region, but integrated a,long different path, that is

N

u” =3 Al + Z Blug (15)
n=0
with the components form
ui"’(n) = 22@ r‘Q(ilcC'n”e_"’Z + u;Dflze_”éz)e_ik”” dk (16)
Why = g (O — kD) ()

where I'; is the integrated contour as shown in Fig. 2(b).

Substituting eqn(9)-(17) into the stress-displacement relations, we have total stress expressed in terms
of the stresses of the free field and the scattered field as

ol o1 hy
rr — + Al { 'rr(n) }+ Bl{ rr(n) } : cD 18
{ 0719 } { } Z UTG(n) Z Url?(n) " ' ( )
o ha
{ } Z A2 { rr(n } + Z Bz{ orr(n) } :re D, (19)

7'9(71) ar&(n)
where ¢!, i = 1,2, is the radlal normal stress and o?, is the shearing stress. The incident, reflected
and scattered wave fields automatically satisfy the traction free conditions at the half-space surface.
Therefore, the remaining boundary conditions to be satisfied are:

Urlr(r =a,0) = arzr(r =a,0)
ol(r=a0) = ohir = a,0)
ul(r =a,0) = ul(r=a,0)
ul(r =a,0) = u’(r=aq,b) ; 0<6<r (20)

By imposing these boundary conditions at L points along the interface C, we have a system of linear
equations of the form

[G] {c} = {/} (21)
where vector {c} contains the complex coefficients A and B, i = 1,2, vector {f} corresponds to the
stress and displacement fields of the free field along the interface C, and matrix [G] contains the singular
solutions. The size of matrix [G] is (4L) x (4N + 4), where 4L > (4N + 4) is the order for solving
eqn(21) in the least square sense. Once the complex coefficients are determined, the displacement fields
can be evaluated throughout the elastic medium according to eqn(6) and (7).



EXCITATION: INCIDENT P, SV, AND RAYLEIGH WAVES
The incident P wave can be represented by the potential
¢ = Ayeiltemaz—wi) (22)
where
¢ =kysin, , o=k,cosf

6, is the incident angle as shown in Fig. 1, and A, is the amplitude. Far from the alluvial valley, the
incident wave is reflected from the free surface. A reflected P and SV waves with amplitude A, and B,
will be given by

. ¢r — Aze—i(fz+az—wt) (23)
wr — Bze—i(§x+ﬁz—wt) (24)
where 8 = k, cos 3, 8, is the angle of reflection of SV wave, and
Ay sin20;sin 20, — &2 cos? 20, o5
Ar sin20; sin 26, + k2 cos? 20, (25)
B, —2sin 20, cos 20, (26)
Al sin26;sin 260, + 2 cos? 20,

in which k = ¢,/c; is the ratio of the wave speeds
2(1 —o)
w= \/ 120 (27)
with ¢ being the Poisson ratio of the half-space.
For the incidence of SV wave with amplitude B,
,¢yi — B]ﬁ—i(fz—ﬁz—wt) (28)

When the incident SV waves are reflected from the free surface, two different reflected P waves will
result, depending on the incident angle 8, > 8..(critical angle) or #; < ... The case where the incident
angle large than the critical angle is not considered here because the free field solution becomes complex
and causes attenuation in the z-direction. The critical angle, 0., is defined by

0::7‘ = sin~" Ei
sin (cp) (29)

For the case of 6, < 6,,, the reflected waves with potential take the form

¢r — A26—i(£z+az—wt) (30)
B= Bueeessia (31)
with
B, sin 20, sin 203 — k% cos? 26,
B_1 - sin 26, sin 284 + 2 cos? 20, (32)
Ay _ 22 sin 20, cos 20, (33)
B sin 26, sin 205 + k2 cos? 26,

For the incidence of Rayleigh wave, the displacements generated by these waves decrease with increasing
z and tend to zero as z increases beyond bounds. The corresponding potentials are assumed to be of
the form

¢R — Aae—blze—i(kgz‘—wt) (34)
'L/)R — Bse—bzze—-i(knr—ut) (35)
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Fig. 3 Amplitudes of the surface displacements generated by incident P wave
for p=(a) 0.5, (b) 1.0. Circles represent the results by BEM.

where
by = kpy/l—ci/c (36)
by = kayl —c%/c? (37)

kr = w/cg is the Rayleigh wave number, cg is the Rayleigh wave speed. By imposing the traction
free boundary conditions at the free surface of the half-space, one can find the Rayleigh wave speed
cr = 0.46626¢, for Poisson ratio 0 = 1/3 and the ratio of A3 and Bj is

By 2biikr

A BiE (38)

NUMERICAL RESULTS

The surface displacements are calculated on and near the alluvial valley with different dimensionless
frequency § = wa/mcy, which is defined as the ratio of the width of alluvial valley to the incident
wave length of the half-plane shear wave. The Poisson’s ratio for both regions is taken to be 1/3, and
/g2 = 6, p1/p2 = 1.5 for all cases studied here.

The z and z displacements component u, and u, can be calculated by eqn(7) for the interior region
and by eqn(6) for the exterior region. The corresponding amplitudes of displacements are defined as

el = VIRe(uo)] + [Im(us)]? (39)
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Fig. 4  Amplitudes of the surface displacements gencrated by incident SV wave
for 77=(a) 0.5, (b) 1.0. Circles represent the results by BEM.

sl = V[Re(us)]? + [Im(u,)]? (19)

The order of the expansions and the number of the collocation points depend on the excitation fre-
quency, more collocation points and higher order of expansion are required at higher frequencies in
this method. For a semi-cylindrical alluvial valley subjected to incident P waves with different incident
angle and frequency, the displacement amplitude |uz| and |u.| versus the dimensionless distance z/a
are depicted by Fig. 3, and compared to the results obtained by boundary element method provided
by Yeh et al.(1995a). Fig. 4 and 5 shows the diffraction on a semi-circular alluvial valley for incident
SV and Rayleigh waves, respectively.

CONCLUDING REMARKS

Some results are presented for the surface displacement generated by incidence of P, SV, and Rayleigh
waves upon a semi-cylindrical alluvial valley on and near the surface of an elastic half-plane. These
results are obtained by means of Maunsell’s method using n-th order Lamb’s singular solution as series
expansion functions for the interior and exterior regions. Boundary conditions at the interface C' itself
are satisfied in the least square sense. Excellent agreements with the solution by BEM are shown.
This fact and the simplicity of the procedure presented confirm that the method can be used with
advantages in many problems of earthquake engineering and seismology.
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Fig. 5 Amplitudes of the surface displacements generated by incident
Rayleigh wave. Circles represent the results by BEM.
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