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ABSTRACT

A generalized analytical method and an efficient numerical solution procedure are developed for the nonlinear
seismic analysis of base-isolated multistory buildings. In the analytical development, while the superstructure
is modeled as a linearly elastic system with a rigid diaphragm at each floor level, the seismic isolation system
of laminated high damping rubber bearings is characterized by a nonlinear mathematical function. Taking
advantage of the localized nonlinear behavior of a base-isolated multistory building, the numerical solution
procedure can be largely simplified by applying the modal analysis to the superstructure to obtain a composite
mass matrix for attachment to the base slab. This process results in a set of uncoupled nonlinear equations of
motion with an integral term involving only the base slab displacements. The set of integral-differential
equations can be efficiently solved using the cubic B-spline collocation method.
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INTRODUCTION

Base isolation has increasingly become an accepted way for reducing damage in buildings and their contents
in earthquake prone areas. One of the most commonly used seismic isolation system comprises the laminated
natural rubber bearings which are positioned at the base level of a multistory building so as to reduce the
transmission of damaging earthquake ground acceleration into the superstructure. The laminated high
damping rubber bearings (LHDRBsS) in an isolation system exhibit strong nonlinear behavior. Their force-
displacement properties depend on the axial load, bilateral load and rate of loading. In order to predict the
seismic response of a base-isolated structure using LHDRB isolation system, it is necessary to find a suitable
mathematical model of the isolation devices as well as an efficient numerical algorithm for carrying out the
nonlinear dynamic analysis.

For nonlinear dynamic analysis, there are general purpose computer programs such as DRAIN-2D (Kannan
and Powell, 1975) which can also be used for seismic analysis of base-isolated structures. Elements available
in these programs are however limited to those exhibiting general hysteretic behavior and cannot accurately
model LHDRBs. Special purpose computer programs have thus been developed for the nonlinear dynamic
analysis of base-isolated structures. NPAD (Way and Jeng, 1988), for example, has a plasticity based bilinear
element that can be used to model elastomeric bearings. Recently, 3D-BASIS (Nagarajaiah et al., 1989,



1991) was developed with more sophisticated nonlinear elements for dynamic analysis of base-isolated
structures in 3D.

It is generally difficult to model the force-displacement properties of LHDRBs using only a few parameters,

as usually is done for the plasticity based elements. The authors thus propose the macromodel shown in (1)
and (2) with a set of undetermined parameters to simulate the force-displacement characteristics of LHDRBs:

F(u,u)= K(u,uyu+ C(u,it)i ¢))
where
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in which the parameters a; with 1 = 1 to 11 can be determined using the least squares method based on the
experimental data of either a coupon test or a full-scale bearing test. The proposed macromodel of (1) and
(2) represents the shear force as a nonlinear function of the shear deformation and the deformation velocity.
Results of a case study applying the proposed macromodel to coupon test data are shown in Fig. 1. It shows
that the proposed macromodel simulates closely the experimental data. Equations (1) and (2) are therefore
used in the following work to describe the mechanical behavior of LHDRBs.

In this paper, a generalized analytical model is developed, which considers a multistory base-isolated structure
as a combined system of an elastic superstructure and a nonlinear base isolation system. Since the
nonlinearity is confined to the base isolation system, the nonlinear equations of motion of the base slab can be
decoupled from the superstructure displacements by attaching a composite mass matrix to the base slab.
However, this process introduces an integral term into the set of uncoupled nonlinear equations which
involves only the base slab displacements. The B-spline collocation method can then be employed in the
solution algorithm to deal with the integral-differential equations resulting from the decoupling process.
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Fig. 1. Comparison of coupon test data and simulation using (1) and (2)
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Fig. 2. Displacement coordinates of a base-isolated multistory structure

EQUATIONS OF MOTION OF A BASE-ISOLATED MULTISTORY STRUCTURE
The equations of motion of the N-story based-isolated structure shown in Fig. 2 take the form

Mii + Ci + Ku = ~Mr(i, + ii,) (3)
r"Mii + (r"Mr + M, )i, +C,u, +K,u, = —(r"Mr + M, )i, 4)

where M, C and K are the mass, damping and stiffness matrices of the superstructure, respectively, M, ,
C, and K, are the mass, damping and stiffness matrices of the base slab, respectively; u is the displacement
of superstructure relative to the base slab; u, is the displacement of the base slab relative to the ground; r is
a matrix which couples each degree of freedom (DOF) of the superstructure displacement to ground

displacement; and u, = [i,,, i, 0" is the vector of horizontal ground accelerations along the x and y axes.

In order to simplify the analysis of multistory base-isolated structures in 3D, it is assumed that the floors are
rigid diaphragms and that the structural masses are lumped at the floor levels. Based on these assumptions,
M and K matrices of the N-story superstructure can be shown as

M = diag[M, ] k=12 ..,N )

K, +K, -K,
-K, K,+K; -K;

K= (©)
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where the mass matrix My and stiffness matrix Ky of the k-th floor are in the following form:
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In (7) for the k-th floor, m, is the floor mass, x, and y, are the x and y coordinates of the center of mass,
and J,_ is the rotational inertia about the vertical axis at the center of mass. In (8) for the i-th column
between the (k-1)-th and k-th floors, &, and k,,, are the lateral stiffness along the x and y axes, respectively,

and T\; is the transformation matrix.

While the mass matrix My, of the base slab has the same format as in (7), the stiffness and damping matrices
are as follows:

_ 2| K (518, 0
Kb - Z Tbi|: 0 K(ubi, ilbi):lTbi (9)

_ T «(ub,,ub,) 0
Cb ‘ZT [ 0 C(ubiailbi) bi (10)

where K(u,;,,) and C(u,,,u,;) follow the proposed macromodel of (1) and (2), and w7, = 0+ uy, is the
resultant displacement of the i-th bearing of the base isolation system.

If the displacement of superstructure relative to the base slab is expanded in terms of the eigenvectors ¢, of
the corresponding fixed-base superstructure, it takes the form

u :Zqi¢i (11)

where g, is the normal coordinate. The damping matrix of the superstructure C, which satisfies the
orthogonal condition ¢! Cg, =0 for i # j, can be determined using the following formula:

28,0, T
= M«S(MM(¢ M) (12

Substituting (11) and (12) into (3) and (4) results in the following two equations:

G,+2Bm .4, +wlq =~ L,(ii, + ii,) (13)
3N
Y r™™gg, + (r"Mr+M,)ii, + Cyu, + K,u, = -(r"Mr + M, )ii, (14)

i=1

in which L, = (¢,T Mr)/ (¢,T M¢,.) is the modal participation factor of the corresponding fixed-base

superstructure. From (13), the normal coordinates g, can be determined in terms of i, and ii, through the



Duhamel integral,
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q,= J.ot[iib(t —7)+ii (1 - r)] exp(-w,B,7)sin @,rdr (15)

Assuming ii,(0)=0 and ii,(0)=0 and integrating by parts, one obtains

g, = —Lij:[iib(t —7)+i,(t- r)] exp(-w,B,t -, sinw,7 +cosw,7]dr (16)
which, together with (15), can be substituted into (13) to arrive at the following equation:

G, = —L,(ib, +ii, )

+ Lia),.j:[iib(l - r) + iig(t - r)]exp(—a)iﬂ,.r)[(l - Zﬂf) sinw,T +2f, cos a),r]dr an

Equation (17) can then be substituted into (14) to obtain the following equation of integral-differential type:
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where
I, = exp(—w,ﬂ,.t){[@ ~2fsinw t +28, cosw | I, - [(1- 282 )cos 0, - 26, sin Ib,.s} (19)
1, = exp(-a pA[(- 262 pin s + 28, cosw f] 1.~ [(1- 267 Jeos 0, - 2, sinw 1] Ig,.s} 20)

in which
L, = [ ii,(r)exp(@,B,7)cos,wd 1)
L, = [ it (z)exp(w,B,7)sin w,zdz 22)
I, = | i, (z)exp(@ f,7)cos o,ndz 23)
I, = [ i,(c) exp(@ B,7)sin @, ud (24)

Equation (18) is an uncoupled equation which involves only the displacement, velocity and acceleration of the
base slab as the unknowns. Substituting (5) and (6) into (18) results in the following equation in a more
compact form:

_ L _ W
Mii, +Cyu, +K,u, + ZMia)iLilbi =-Mu, - ZMia)iLiIg,. (25)

i=1 =1



where M is a composite mass matrix for the uncoupled equation,
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SOLUTION ALGORITHM

Based upon the above derivations, computation procedures for numerical solutions can be summarized as: (i)
Assemble the mass, damping and stiffness matrices of the superstructure and the base isolation system, (ii)
Solve the eigenvalue problem for ¢, of the corresponding fixed-base superstructure, (iii) Solve (25) for base

slab acceleration ii,, (iv) Calculate the normal coordinate g, using (15), and (v) Calculate the relative

displacement of superstructure u using (11). Note that (25) is an equation of integral-differential type, for
which the spline collocation method is a suitable solution technique. The dynamic response is therefore
obtained by numerical integration of (25) using the cubic B-spline collocation method.

The displacements of the base slab interpolated using the cubic B-spline function Q take the form

+1 _
u, = [th,, 14, ]T:pchi j=-101 .., p+l (30)
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J==

T . . . . .
where ¢; = [c 65C iy cﬁ,] , At is the time step, p is the total number of collocation points, and

(s+2)° s e[-2,-1]
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At the collocation point #, = KAz, the displacement, velocity and acceleration of the base slab can be
expressed as



u,(t,)=(¢c,, +4c, +c,,,)/6
u, () =(€y —€y)/ (2A1) k=012, .. p+l (32)
i, (7,) = (e, —2¢, +ck+l)/(At)2

Substituting (32) into (25) and setting ¢ =7, , the following equation can be obtained:

N
MCyy T 16, +15C,, + Z M;wiLiIbi(tk) =K (33)
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where

m =M/ (A1) -C,/(2A)+K, /6
n,=-2M/ (A1) +K, /3

7, =M/(Af) +C, /(2A1) +K, / 6 (34)
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Equation (33) is therefore a nonlinear system with ¢, being the unknowns and can be solved using an
iterative method at each time step 7, , according to the following formula:

1 v,
Chn1 = ;]—I:Fk Iy — 1,6 — ZleiLlIbi(tk)i| k=012, .. p+l] (35)
3

i=1
The starting vectors ¢_,, ¢,, and c, for (35) take the form

c, =u,, —u, Af+i1,,(Ar)* /3

Co = Wy — (A1) /6 (36)
¢, = u,, +u,,Az +ii,, (A7)’ /3

In the above equations, u,, and u,, are the initial displacement and velocity, and ii,, can be determined by
substituting u,, and u,, into the dynamic equilibrium equation (25) with 7=0.

Having obtained c, as shown in (35), the base slab displacement u,, velocity &, , and acceleration i, can be
computed using (32). The normal coordinate g, and subsequently the relative displacement of superstructure

u can be calculated according to (15) and (11), respectively. The numerical algorithm for computing the
nonlinear seismic response of base-isolated multistory structures incorporating LHDRBs is thus complete.

CONCLUSIONS

A generalized analytical method which results in an efficient computation algorithm has been developed to
address the combined system of a linear superstructure and nonlinear LHDRB seismic isolators. In order to
reduce the computation effort in the iterative procedures of nonlinear dynamics, the eigenvalue problem of the
corresponding fixed-base superstructure is solved first. The displacements of the superstructure are then
eliminated from the equations of motion of the base slab. The system of nonlinear equations so obtained is
uncoupled and has only as unknowns the three DOFs associated with the base slab motions. This makes the
iterative solution of a base-isolated multistory structure in 3D much more efficient than the conventional



method where the equations of motion involve all DOFs of the superstructure plus those of the isolation
system. The computation effort for the localized nonlinear system is thus largely reduced.
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