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ABSTRACT

The response of general multiple-degrees-of-fieedom systems subjected to several components of non-
stationary random seismic excitation of multiple supports is studied. It is assumed that a measure of the
seismic intensity is cummulative square accelerations, or Arias Intensity, which depends from the surface
wave magnitude and the focal distance of earthquake. The parameters characterizing the stochastic
ground motion model are defined considering this measure. The seismic response analyses of extended
structures for spatial effects are based on the idea that the total displacement is separated into quasi-
static and vibrational components (Clough and Penzien, 1975). In this paper the procedure is obtained for
quickly estimating the root mean square and peak seismic responses of the extended systems that allows
to take into account the spatial correlation of the ground motion components, the strong-motion duration,
the cross-correlation of modal coordinates closely spaced in the frequency domain efc.
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INTRODUCTION

Seismic response of extended systems like long-span bridges, pipe-lines or other lifeline structures
depends on many factors, such as spatial variations in the earthquake ground motion under the support
points of the system, the duration of excitation, the arrangement of supports efc. In the earlier studies
(Bogdonoff et al, 1965; Petrov, 1967, 1974, 1978; O' Rourke et a/, 1980; Abdel-Ghaffar, 1980; Abdel-
Ghaftar and Rubin, 1982, 1983 and other authors) it was found that the seismic response values
associated with spatial variations of the ground motion may differ significantly from those obtained
through uniform ground motion. For the solution of the problem, time history or spectral analysis are
utilized. Offen the apparent propagation velocity is introduced and the travelling wave hypothesis is
utilized. Another way to describe the spatial variation of the ground motion is using the sumultaneous
records collected by closely spaced arrays of strong-motion instruments (Harada, 1984). However, at
present the necessary seismological data are not suffucient. General expression for spatial correlation of
ground motion (Petrov, 1978) permits to introduce different assumptions, for example, travelling wave
(or "frozen wave") hypothesis or uncorrelated (or statistically independent) unput support motions efc.
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The parameters cf the stochastic ground motion model are defined considering cumulative square ground
accelerations.

The proposed approximative procedure for quickly estimating the root mean square and peak seismic
responses of the extended systems allows to take into account the spatial correlation of ground motion
components, the strong-motion duration, the relatively long natural periods of the system and very small
damping, a large number of modes and cross-correlation of modal coordinates closely spaced in the
frequency domain.

EQUATIONS OF MOTION

The motion of a structure which is subjected to multiple support excitations can be governed by the
differential equations (Clough and Penzien, 1975)

Mi+Cu+Ku= -MR,, ¢))
where M., C and K are mass, damping and stiffness matrices respectively, u - the vibrational

displacement vector; U, - the ground displacement vector of support points; R - the quasi-static influence

matrix which represents the displacements of structure due to unit displacement at each support, while the
other support are held fixed.

The total displacement vector of the degrees of freedom is the sum of the quasi-static (ug) and the
relative or vibrational displocements

ut=u+us=u+Ru0 (2)

The vibrational displacement at point j of the structure due to displacement at k-th support may be
decomposed into its modal solution

N
ukj(t) = Z aijfm(t), (3)

i=1
where &;; - the i-th mode shape of the structure; fy, (t) - the i-th generalized coordinate, which satisfies
the decoupled equation

£ (t) + 28 p i (1) + PP () = -t (D / M, 4)
in which &, p, - the damping ratio and the natural circular frequency, respectively, of the i-th mode;

n
M, = Z msa?ﬁ - the i-th generalized mass; m - the mass, concentrated at point s of the structure;

s=1

n
O = Z Mgleyq; Tiq - the quasi-static influence function which gives the displacement at point &
5=]

due to a unit displacement at the k-th support, while the other supports are held fixed.

In right part of the Eq.(4) the velocity terms are ignored because its contribution to the total response is
usually small when compared to that of the acceleration.
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MEAN SQUARE RESPONSE

The mean square response at point j of the structure is given by

N
ul(t)= Zaljarjfl(t)fr(t); )
i,r=1
1 . .
£ (DLt = EJGQRP(w)fl"(lm,t)q)r(—lm,t)dw : (6)

-

®,(iw,t), P (-iw,t) - i-th complex frequency response and r-th complex comjugate frequency
-1

response ; if t — 0, O(iw,t) > {p? -+ 2&}),1&)] Ciw=J-lem Gqq, (@) - the cross-

spectral density of the generalized forces 3; and @Q ., which is given by

I
G, (@)= Y Giu(@)d,8, / MM, ™
k,l=1
The cross-spectral density function between the inputs at points k and | is

Giu(@) = 0y oy VGO ICN(@R_y (), (®)
where Tig > Oy, - the root mean square (rms) of the ground aceelerations at points k and 1;
Gg{{( w), Gﬁ( @) - the normalized power spectral density of the ground accelerations at points k and I;

Rﬁd‘ﬁd (@) - the cross-correlation of the ground accelerations.

Now, substituting Eq.(7), (8) into Eq.(6), yields

Iig
BOLG= Y oy, o, 17608, / MM,; 9
K,l=1
1 : :
140 = E;IJJG§*‘ (“’)Gi (@Ry_y (2)D(io, )P (-, t)d @ (10)

Then mean square of vibrational displacement can be represented as

041, O Ol OY
24y = § '§ Lt et ety P
Jr dr:mél 'IM Mrplng Uy u t)ﬂn t)Axr'lrkis (11)
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B () = pt 1 fGN (Do, ) dw; (12)
275_m Yok
Ay =100/ IO, € =TE0 7 JIBOED (13)

In the low frequency range of the power spectral density the mean square resonant magnification factor is

Bty = (p; / 4£)Gq (pi)[1-exp(-2&,pt)], (14)
where t = 1 - the strong-motion duration.

¥ &—0, Fit)=—05pftCy (py).

Then §,(&)) / &= 0) = [1-exp(-2£p,D)]/2£p,E

For example, at & =0.005 (0.5% damping), t=15s, p; = L7s™! (the suspension bridge across the
Amudarya-river with span length 660m) £,(0.005)/ £,(0)=0.945. At &£=0.05 (5% damping)
£,(0.05)/ £,(0) = 0.62. Accordingly £,(0.5%)/ £,(5%) = 1.5,

The factor A;. describes the cross-correlation of i-th and r-th modal coordinates. The solution of

integral Ig’ri may be computed using the concept "white noise” for the random loading (Petrov and
Bazilevsky, 1978; Kiureghian A.D., 1980).

The factor C,.,, accounts the spatial correlation of accelerations at the k-th and I-th supports. The

function Rﬁd‘ﬁd {@) in Eq.(10) can be written as it was assumed earlier (Petrov, 1978)

Ry _u (@)= exp’:—i—’Lkl(ci + czi):l, (15)

where L, -the length of span between k-th and 1-th supports; v - the shear wave velocity, ¢;,¢5 - the
constants; 1= v-1.

For example, the travelling wave (or "frozen wave") hypothesis corresponds to ¢; =0 ,c5=1; the
uncorrelated multiple-support excitations - ¢; — @ €5 =0 and the full cormrelation case -
¢; =0 ,¢, =0.

Then Cypyy# ReRy_y (P pir =0.5(p; + py).

The mean square of quasi-static displacement can be now found using the following expressions

_ N 1
Z
Ug = Z Zaijarjlkl‘slkgrl /MM, (16)
fr=li,1=1
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1 -
Tu=s- j o™ [Gy_ ()G (@Ry, ¢ (e)de= 06, o, Ry (17)
-0
The cross-correlation fimction of the ground displacements at points k and 1 can be approximated by
Ry~ @i L /Y eos(cyf Ly, / V), (18)

where 8 - predominant frequency of ground displacements.

Using the data of SMART-1 arays (Harada, 1984), we may obtain wave length
A=2av/ 6 1600+ 4800m and ¢; # 0.25 ,cp w1, Hvwl000mss, § ~ 12+ 457L,

Ignoring cross-correlation vibrational and quasy-static components, the mean square total response can
be written as

u? =u?+u? (19)
Assuming oy = oy = oy, Gy, =Gy, Ay =1 Ay =0 (i#r), Oy =1, for symmetrical

bridge with two supports (ny = 2) and span length L the mean square of the total displacement at point j
can be expressed as

= T3 i - o3
uj(h) = oy, Zﬁ% (t)asg M—_gpz+ o, Z &4 (20)
i=1 1 Hi i=1
Ezz(li’ciikl)i ﬁg'—'?ﬂiRm) : (21)

Then for travelling wave ;,T‘? =21+ cos(p L/ W)} W= 2[1+ cos(6L / v)], for full correlation

case ,ugﬂ = ,ugﬂ =2; ,ug’) = ,a;" = 0; for uncorrelated case ) = f, = V2.
The mean square of the bending moments, shearing forces responses efc can be obtained by replacing the

@y, &y with the 2quivalen t values responses accordingly.

The proposed procedure is utilizied for analysis of some extended systems: the ruspension bridge across
the Amudarya-river (span length L=660 m), the row suspension bridges for mountain regions of
Tajikistan; the Rogun multispan highway bridge; the arch bridge across the Arpa-river (L=120 m) in
Armenia and other structures. The seismic response analyses implies that the suspension bridge's vertical
response is not affected only by the vertical ground displacements, but also by the longitudinal ground
displacements.

ASSESSMENT OF THE RMS GROUND ACCELERATION
AND DURATION OF EXCITATION

Cumulative square accelerationg, or Arias Intensity, may be a measure of the seismic intensity at time t
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@
I, =Iﬁ§(t)dt, (22)
i)
where iio(t)- nonstationary random earthquake acceleration, represented by
iiy{t) = A(t)p(t), (23)

where @(t)- the stationary random process with the power spectral density finction Kanai-Tajimi or
Barstein-Bolotin;
A(t) - the intensity parameter, which has been modelled as time-dependent function

t
Alty=Ay—elt/t=, (24)
tm
The suitable value § of mean duration of excitation ie selected vging conditions that the limits of the
integral (22) comprige 80 per of the total energy. Then

Lo =Ia(tyg) - Iatyy) =0 %10 [2 (25)
where oy = 0.64, ve- the rms acceleration; to1.tgo- the limits of the integral (22) comprising 10
per cent and 90 per cent of the total energy, respectively;  =0.8et,;; to; =ty5, is the time, when.
AW=0.5A,.
In seems the next approximations can be suitable

Erexp(0.66M-2.34); /T, = ¢,ge“ MR, (26)

where M, R - the magnitude of the earthquake and distance of the source from the site; ¢, ¢,,¢4- the
regional constants; g - acceleration of gravity.

PEAK RESPONSE FACTORS

The expected spectral peak value of responses (displacements, stresses efc) is equal to rms responses
multiplied by peak factors:

Upax =IO, (27)
The peak factor can be given by equation of Vanmarcke (1976)
r=/2In{2n[1- exp(-&,VAn2n )]}, (28)

in which n = (@,t / 22)(-Inp)™";

O,- a measure of the spread in the frequency content of the power spectral density fimction; )y - the
central frequency, P- the probability that the response does not exceed the peak value at time {,
determined as P =1+(T / 7 )InR. (Bolotin, 1980); T - return period of the earthquake with the
magnitude M; - lifetime of structure; R.- rate of reliability, R+=1-Q.(Q.- rate of the seismic risk). If

Qi< 1, nRux-Q.. FQ.T/r=< 1, -In. p=Q.Tr.
The values r are equal 2.5+ 4,
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CONCLUSION

It is suggested that uniform ground motion is not a good assumption for extended systems. The total
displacement is the sum of the quasi-static and the vibrational displacements. In general, the spatial
variability of longitudinal components of ground motion may excite significant quasi-static contribution.
The longitudinal components of ground motion are likely to excite both vertical and longitudinal
vibrations of the extended suspension structures.

The analyres of seismic response to multiple earthquake excitation show that the contribution of
summetrical modes usually decreases as the span length increases In comparison with the effective
wavelengdth and contribution of anti-symmetrical modes increases accordingly. The efficiency and
simplicity of the proposed approach are obtained without inducing significant errors, if realistic data are
provided.
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