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ABSTRACT

In some cases, seismic floor response spectra of inelastic structures have been observed to be higher than
the elastic floor response spectra in the high frequency range. It is hypothesized that this happens due to
the phenomenon of internal resonance. First, the conditions under which internal resonance can happen
are examined through the numerical results obtained for a two degree of freedom nonlinear structure
subjected to harmonic base inputs. It is shown that internal resonance can occur in base excited
structures if some higher mode frequencies are odd integer multiples of the fundamental frequency, and
if there is a strong input at this frequency. To demonstrate that international resonance can occur even
in earthquake excited hysteretically inelastic structures, numerical results for a ten degree of freedom
structure are also presented.
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INTRODUCTION

It is a common knowledge that yielding in structural system due to seismic motions affects a reduction
in the elastically calculated forces. This beneficial effect of yielding is currently utilized in code provi-
sions (Building Seismic Safety Council, 1994) for seismic design of building structures. The elastically
calculated forces and accelerations are reduced by a factor commonly referred to as the response reduc-
tion factor R. The choice of R-factor depends on the type of structure to be designed. A larger value of
R is associated with a more ductile structures which can accommodate yielding deformations without
apparent damage. For example, for specially designed moment resistant steel frames, the elastically
calculated forces can be reduced by a factor of 8. An extension of this concept for reducing elastically
calculated structural accelerations also seems natural. This has direct implication in the design of sec-
ondary systems, which are also called as nonstructural and architectural components in building design
community.

For the design of light secondary systems in critical facilities such nuclear power plants, the floor
response spectra are commonly used to define seismic design input. One simple approach to include the
effect of yielding on floor response spectra will be to use the same response reduction factor with the
elastically calculated floor response spectra as the one used to calculate inelastic force response from



the elastic response. This may seem justified, as due to yielding, the maximum acceleration of a floor
in a structure is reduced in about the same proportion as the forces in the structure.

To provide a quantitative description of the aforementioned beneficial effect of structural yielding of
floor response spectra, a study on single degree of freedom yielding structures was conducted by Lin
and Mahin (1985). This study provided a very valuable quantitative information about the level of
response reduction one can expect for different primary structure and secondary system frequencies.
Broad conclusions of this study were that (1) one can expect a reduction in the acceleration spectrum
response for frequencies larger than the supporting structure frequencies, (2) the level of reduction in
floor response spectrum was neither the same as in the base shear values and nor uniform for the entire
frequency range of interest and, (3) one could also expect a minor increase in the response over the
elastic response for secondary system frequencies lower than the supporting structure frequency. This
study, although raised the possibility that inelastic response could be higher in a certain frequency
range (which could be of practical interest for very flexible equipment), it did not reveal the possibility
of obtaining increased inelastic response at frequencies higher than the fundamental frequency of the
supporting structure, primarily because the study only considered single degree of freedom supporting
structures. A later study by Sewell et al. (1986), however, raised some very puzzling questions. Through
a comprehensive parametric study of a multi degree of freedom shear buildings, the study showed that
in some yielding structures one can get a higher floor response spectrum than the corresponding elastic
floor response spectrum. It was pointed out that this effect was more pronounced when the yielding
was localized and the base input was narrow band centered around the fundamental frequency.

INTERNAL RESONANCE

Although not explicitly suspected in the Sewell study, the primary cause for a higher floor response
spectrum amplification in inelastic structures is the phenomenon of internal resonance ( Nayfeh and
Mook, 1979), well-known in the field of nonlinear oscillations. It occurs when the higher frequencies of a
first order linear structural system are equal to, or near, the integer multiple values of the fundamental
frequency, and if there is an external energy input at the fundamental frequency of the structure. In
such cases, because of modal interaction, there can occur a transfer of energy from the fundamental
to higher modes. In stable structural systems, restoring force characteristics are odd functions of
deformation. For structures with symmetric hysteresis loops for positive and negative deformations,
one can approximately represent the average or equivalent (in some sense) restoring force as an odd
power polynomial of deformation. In such cases, if one or more higher mode frequencies of the first
order linear system are odd multiples of the fundamental frequency, then a transfer of energy from the
first mode to the higher mode can occur. The five story structure and input motions considered in the
Sewell study did have the conditions conducive for internal resonance.

To show the internal resonance analytically, here a two story shear beam model is considered. It is
the simplest structural model through which one can show internal resonance without insurmountable
analytical complexities. The schematics of the model are shown in Figure 1. The first story stiffness
with small cubic nonlinear term is considered. The linear stiffness and mass characteristics are chosen
such that the second mode frequency is about 2.958 times the first mode frequency. The two modal
frequencies are given in Figure 1. To include some energy dissipation through viscous damping, a
proportional damping matrix with modal damping ratios of 2% has been included in the model. The
base input to the system is harmonic of frequency near the first mode frequency. The equations of
motion for such a system with nonlinear restoring force can be written as:

miZy +enfy +cieZe + fa — fo = —mid, (1)
moZe + ey + coado + foo = —mod,

where z; and z; are the relative displacements of the first and second floors, respectively; c;; are the
elements of the system damping matrix; m; and m, are the floor masses, and f,; and f,, are the



nonlinear restoring forces in the stories, defined with cubic nonlinearities as follows:

fs1=ki1z1 — klxi’ i fe=ko(zg— 1) — ko (z2 — 1'31)3 (2)

We will assume that the cubic nonlinearity is small enough such that perturbation methods can be
applied. To examine internal resonance, we will consider a nearly tuned harmonic input of frequency
Q2. To solve eq.(1) for the forced response, the method of multiple scales can be used. It can be shown
(Nayfeh and Mook, 1979) that the forced response solution for a near resonance case (that is,  ~ w;, =
first frequency of the system) can be expressed as:

r, = ¢11&1 COs (Qt - ’)’2) + ¢12a2 COSs (3Qt + " — 3")’2) (3)
Ty = ¢na1c08 (U — v2) + Pozaz cos (30 + v — 372)

where {¢11, ¢n }T and {¢;, d)gg}T are the first and second modal displacements for the first order linear
system. For the steady state response, the parameters ; and -y, are phase values which are related to
amplitudes a; and a; according to the following equations:

(4)
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0

8weag (302 — 07) ~ (3a8a§ + 2a6af) ay — asas cosy; =

In these equations, oy, .04 are related to the nonlinear stiffness coefficient and modal displacement; 5;
and [, are modal damping ratios; and o, and o9 are the detuning parameters defined as:

wy = 3wy + €%, ; Q=w; + %oy (5)

where £2 is the perturbation parameter, expressing the relative strength of the nonlinear term compared
to the linear term.

These equations are solved for a;, az, v, and 7, by numerical procedures. Knowing z; and z,, one
can define the absolute acceleration time histories of the two floors. These two time histories are then
applied to a single degree of freedom elastic oscillator to obtain floor response spectrum values. To
calculate the floor spectra for the linear case, the nonlinear terms are dropped and a linear modal
analysis is used.

NUMERICAL RESULTS

The following results are obtained to demonstrate the internal resonance and its effect on floor response
spectra. Only nonlinearity, confined to the first story, is considered as systems with distributed non-
linearity do not exhibit internal resonance. The floor response spectra results are presented to show
the effects of the input frequency detuning, placement of secondary oscillator, intensity of base motion,
strength of the nonlinear stiffness term relative to the linear term, and equipment and structure damp-
ings. These results are followed by similar results for a 10 story shear structure subjected to random
earthquake inputs.

Figures 2 and 3 show the linear and nonlinear floor response spectra for the first and second floors for the
case of exact tuning, that is, the frequency of the input harmonic motion being exactly equal to the first
mode frequency. The nonlinear spectrum has an additional peak near the second structural frequency
which is completely absent in the linear case. This peak is due to transfer of energy from the first mode
to the higher mode caused by internal resonance. The quantitative differences between the linear and
nonlinear spectra are perhaps better presented in terms of their ratio, call the floor response spectrum



ratio (FRSR), shown in Figures 4 and 5 for the above two cases. This ratio is slightly higher than 1
for the entire frequency range, except near the frequency of excitation where it is slightly less than 1
and, of course, near the second mode frequency where it is significantly higher than 1. Comparing the
spectra for the first and second floors, we observe that the effect of internal resonance is diminished
for the second floor. It is because for the higher modes, though still receive energy through internal
resonance, do not contribute much to the higher floor response. This characteristics is also shown quite
clearly by the results obtained for a 10 story building, presented later.

Next we show the results for a slightly detuned input. The input frequency is now 2 Hz with the ratio of
the first structural frequency to the input frequency = 0.957. Figures 6, 7 and 8 show the floor response
spectra for increasing input amplitudes of 1/5g, 1/3g and 1/2g. We notice that higher the intensity of
the input motion, the stronger the internal resonance effect, as shown by higher FRSR values at the
second mode frequency.

Figures 9 and 10 show the effect of the nonlinearity strength. In the previous figures, the cubic nonlinear
term was 10~ time the linear term. For the cases of strong nonlinearity, the cubic terms are chosen as
1073 and 1072 times the linear terms. It is mentioned that increasing nonlinearity affects the accuracy
of the perturbation approach; that is, stronger the nonlinearity, the less accurate the perturbation
solution approach. However, for the level of nonlinearity considered here, the accuracy does not seem
to be a problem. The floor response spectra and FRSR values depicted in these figures clearly indicate
that stronger nonlinearity implies stronger internal resonance effect.

Next we show the effect of equipment and structural damping on the nonlinear floor response spectra
in Figures 11 and 12. In figure 11, the structural damping ratio is increased to 5% from 2%, used in
earlier cases; all other parameters are the same as for the results of Figure 2. Comparing the FRSR
values in Figures 2 and 11 we observe that an increase in the structural damping is seen to diminish
the effect of internal resonance as less energy is now available for transfer between modes. In Figure
12, the equipment damping ration is increased to 2% from 0.5%, used earlier. Comparing the nonlinear
floor response spectrum in Figure 12 with the one in Figure 2, we again observe that an increase in
equipment damping also tends to diminish the effect of internal resonance.

The above results were for a simple two degree of freedom system with cubic linearity excited by
a harmonic input. To show that internal resonance phenomena can also manifest in a more realistic
hysteretic structure excited by an earthquake induced ground motion, the following results are presented
for a 10 story shear building structure. The elastic modal frequencies of the structure are: 1.666, 4.962,
8.147, 11.15, 13.90, 16.35, 18.42, 20.09, 21.31 and, 22.05 cycles per seconds. It is noted that the ratios of
the higher mode frequencies to the fundamental mode frequency are: 2.978, 4.890, 6.693, 8.343, 8.814,
11.06, 12.06, 12.79 and, 13.23. Since several frequencies are odd multiples of the first frequency, there
is a good possibility of interaction and internal resonance. Since internal resonance is more pronounced
in systems with concentrated nonlinearity, here the strength characteristics of the structure have been
chosen such that yielding can occur only in the first story. The force deformation characteristic of
the yielding element is modeled by smooth Bouc-Wen model (Wen, 1976). The numerical results are
obtained for both a narrow band recorded accelerogram (Parkfield event of 1966) and also for a broad-
band input defined by 50 synthetically generated accelerograms with frequency response characteristics
similar to those in R(G-1.60 spectra (U.S. Nuclear Regulatory Commission, 1973). In the broad-band
case, the floor response results are the average of the results for the 50 time histories.

First we show the results for the narrow-band Parkfield motion, the response spectrum of which, shown
in Figure 13, has a very strong peak near the structural frequency. Figures 14 and 15 show the linear
and nonlinear floor response spectra for the first and tenth floors, respectively, of the structure. In
Figure 14 for the first floor, where higher modes do contribute significantly to the response, we observe
some quite high floor response spectrum values in the high frequency range. This clearly indicates a
rather very strong internal resonance effect. From the 10th floor response spectrum in Figure 15, we
note that the effect of internal resonance is reduced since at the higher floor levels it is the first mode



which dominates the response. The effect of internal resonance also appears to be less in the case of
a broad-band input. This is noted from the results in Figures 16 and 17, obtained for the first and
the tenth floor for the broad band input. A broad band input has significant energy at the higher
frequencies. The higher modes receive this energy directly from the input, in addition to the energy
transferred due to internal resonance from the fundamental mode . In such situations, the relative
contribution of the energy transferred to a higher mode through internal resonance will not be very
high. Internal resonance is, however, still present but its contribution is now masked.

CONCLUDING REMARKS

In some cases the floor response spectra for yielding structures can be higher in the high frequency
range than the corresponding elastic response spectra, even though there is significant dissipation of
energy due to yielding. Here it is shown that the primary reason for higher inelastic spectra is the
phenomenon of internal resonance encountered in nonlinear vibrations. In civil structures subjected
to seismic ground motion, the internal resonance can occur (1) if the higher mode frequencies are
odd multiple of the fundamental frequency and (2) if there is significant energy in the input at the
fundamental frequency. More perfect the tuning between the structural frequencies and also between
the fundamental frequency and the input, the stronger the internal resonance effect. Structural and
equipment dampings tend to reduce the internal resonance effect. Also if the input is broad-band such
that it provides significant energy to the higher modes, then the internal resonance effect, though still
there, appears masked.
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FIGURE 1: SCHEMATIC OF 2-DOF STRUCTURE
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