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ABSTRACT

It is presented a methodology for the optimal design of energy dissipation devices for the seismic protection
of typical bridge structures. The novelty of the work relies in the adoption of concepts of multiobjective
minimization that allow to develop a rational formulation to account simultaneously for both the required
maximum performance of the dissipative device and the minimum values of the bridge structural response.
Due to the nonlinearity of the problem and the randomness of the seismic action, a numerical approach has
been used and the results of the investigation are presented in terms of manageable design graphs which allow
for some flexibility in the choice of the design parameters of the dissipative device, while respecting
predefined constraints related to serviceability and limit states of the bridge and the device.
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INTRODUCTION

The recent years have seen a continuous growth in the development and application of protective systems for
earthquake hazard mitigation (Buckle, 1993) and guidelines or appendix to seismic code have begin to be
drafted in those countries where passive control systems have been widely utilized (Dolce, 1995). Moreover,
state-of-the-art reports and review papers are now common as well as dedicated session at the conferences
(Kelly, 1986, Buckle et al., 1990, Dolce, 1995). Despite the above, in the guidelines a conservative tendency
can be noted that is justified not only by the short experience on the actual behaviour of the structural
systems, but also by the lack of available aids for a safe design (Buckle 1993). Therefore a general need exists
to better (re)consider some problems that have not got to a satisfactory solution yet and a great effort in the
research is spent to try to develop simplified design procedures often based on optimality concepts, although
the complexity of the problem suggests to resort prefereably to linear systems or to invoke a linearized
behaviour (e.g. Chang et al.,1993, Dowdell et al., 1995, Inaudi ef al.,1993, Scholl, 1993).

Since a clearly stated design methodology seems to be still lacking, the present work is aimed at providing a
general framework for obtaining design graphs when account is to be made for the actual nonlinear behaviour



of the protection devices. The suggested procedure is illustrated according to an oriented application to
typical bridge structures endowed with energy dissipation devices and the novelty, with respect to similar
attempts, should be preferably sought in the adopted formulation based on a multiobjective optimization. The
motivation for the adoption of the said formulation is threefold: it allows to include in the objective function
as many criteria as needed and therefore is appropriate when mutually conflicting criteria should be
simultaneously satisfied; it further leads to minimal solutions that are curves rather than single points therefore
leaving room for some flexibility in the design and, finally, it is sufficiently general to be naturally generalized
to different and more complex protection schemes than those herein referred to.

The numerical application develops according to the "constraint method" so that a sequence of scalar
minimizations, where the most preferred criterion is constrained to respect predefined restrictions related to
the other criteria, have been conducted. Since the dissipative devices are the key elements in the protection
strategy, the constitutive parameters of the energy dissipator have been chosen as design variables and a
nondimensional index, which expresses the ratio of the energy dissipated by the device to the energy input by
the earthquake, has been selected as the primary criterion to be fulfilled; the other "constraint" criteria have
been related both to a limit state for the dissipative device and to the required structural response of the
bridge. The adopted structural model accounts for the interaction between bridge deck and substructure, and
for friction in the bearings. The EC8 indications have been followed to define the seismic input and a number
of spectrum compatible accelerograms to get a statistically meaningful response have been generated
accordingly and then used throughout the numerical analyses.

THE REFERENCE MODEL

As the primary target of the work is the formulation of a proper design methodology, it is convenient,
initially, to keep the reference models for the structure and the seismic input as simple and standard as
possible, yet retaining all the the relevant quantities of engineering interest, in order to focuse the attention on
the procedure in itself rather than on the generality of the achievable results.

Structural Model

A widely used protection scheme for bridge structures, specially in Italy, is that where the deck is
disconnected from the substructure, as in the case of simply supported or continuous span bridges, and the
protection devices are located on top of the piers or confined at the abutements. In these cases and when the
substructures do not contribute significantly to the overall bridge dynamic behaviour, the following
differential equation, governing the motion of a simple oscillator, can be considered satisfatcory to reproduce
the longitudinal bridge motion x induced by the seismic ground displacement x:

mi +cx + F(x) = —mi, §))

In eqn. (1) m is the deck mass, c is the linear damping constant and F(x) is the restoring force which sums the
force exerted by the device (F,) and the friction force (¥y) arising from the conventional bearings necessary to
transmit the vertical loads to the substructure. In view of the large number of numerical analyses to be
performed, eqn. (1) has been given a nondimensional form obtained by dividing the right and left hand sides
by the maximum absolute seismic force m¥ ;5 so that the relevant quantities of the computed structural
response can be made independent from the earthquake intensity. This latter is herein referred to as the
product Cg where g is the gravity constant and C is the seismic zone index that, according to (EC8, 1989),
attains the values C = 0.15, 0.25, 0.35 respectively for small, moderate and strong earthquakes. As concern
the restoring force Fy(x), that is the behaviour of the energy dissipation devices, a standard kinematic



hardening behaviour, characteristic of elastoplastic type devices, which are the most common in Italy, is
assumed; hence the behaviour of the entire model can be made dependent upon three parameters: the treshold
force Fy, the initial elastic stiffness K) and the secondary or elastoplastic stiffness K. ; which are replaced in
turn by the following normalized quantities: 7, = Fy/m X ; n,y, T'= 27(m/ K)) 12 and = Kep/ Kot

Three sets of analyses have been carried out according to different values of the viscous damping ratio v =
c/2(K,-m)!/2 and the friction coefficient B = Fyyw, w=mg being the deck weight. Initially, the conventional
values v=5% and B=0, still according to (EC8, 1989), have been considered, then the sensitivity of the results
has been checked against a more realistic reduced value for the structural damping v=2% and =0, and
against simultaneous presence of friction v=2% and B=2%, where, according to (Mokha et al., 1991), only
the average sliding value has been considered disregarding the breakaway, that is the friction peak. The
relevant engineering quantities which characterize the response of the model are given accordingly in
nondimensional form, among them those needed in the sequel are: the maximum relative displacement ¢, =
Xmax! ¥ g max Detween the deck and the substructure, the kinematic ductility u; = Xpa,/(Fy/Ke)) = Xpax/Xy or an
equivalent measure of the damage sustained by the dissipative device, the maximum force transmitted to the
subsctructure 7may = Fq max/M ¥ g max = 7y[1+&(1-1)] and the supplemental hysteretic damping due to the
dissipated energy Ej, which for a full cycle reversal is equal to Ey=4F) x,(x-1) and do not depend on «.

Ground Motion

A great attention should normally be devoted to the definition and modelling of the seismic action. In fact, the
effectiveness of the design of a protective scheme depends strongly on the knowledge level of the earthquake
expected at the site. Further, it is generally recognized that acceleration time histories artificially generated are
unduly conservative and whenever possible it is prefereable to use actual seismic records to characterize the
seismic action. However, as long as a detailed seismic zoning, capable to provide expected earthquake
magnitude, source distance and site conditions, is lacking, it is prefereable to revert to the generation of
artificial accelerograms compatible with coded spectra if some generality of the results is sought. Based on
the above consideration, two families of pseudo-stationary accelerograms have been generated by means of
the THGE program (Preumont, 1984) using the indications given in (EC8, 1989) for the characterization of
the spectrum profiles. Two different profiles have been considered: soil type A and C representative
respectively of "stiff" and "soft" soil conditions.

PRELIMINARY INVESTIGATIONS

Preliminary investigations have been carried out aiming at selecting, among the possible candidate functions,
those characteristic quantities of the structural response more apt to be included in the objective function. The
study has also permitted to establish practical engineering bounds for the feasible set of the design variables
and the minimum number of accelerograms to employ in the nonlinear analyses in order to achieve a
statistically meaningful structural response.

As concerns the statistical description of the structural response, two series of 30 accelerograms have been
generated, one each for the two spectrum considered. Each series has then been ordered according to three
different sequences and analyses have been carried out for the following groups 5-10-15-20-25-30 of each
ordered sequence. The average values of the structural response, here undestood as the average of the peak
absolute values, the standard deviation and their ratio have been computed and plots have been constructed to
display the trend of these statistics against the increasing number of the accelerograms used. The results,
given in (Ciampi ef al., 1995), show that 15 realizations are necessary to have a completely stable response,



however 10 accelerograms can be considered sufficient for pratical purposes in view also of the savings in the
computational effort.

As concerns the feasible set of the design variables v;, = [T,K,ny]T, that is the range outside which the
characteristic quantities of the structural response would attain values beyond practical feasible ranges, it has
been found to coincide with the interval: 2 < R3 = [0.5<7<3.0 sec; 0.03<m, < 0.45; 0<k< 0.1]. The
motivations for the adopted bounds are the following (Ciampi et al., 1995): the bounds on T avoid excess of
ductility or displacement demand; lower values of 7, are limited by the braking force, whereas higher values
result in an anti-economical use of the dissipative device that would not yield significantly; finally values
greater than 0.1 for x would lead to unreasonable large values of the force transmitted to the substructre in
contrast with the protection philosophy.

As concerns the candidate quantities to be included in the objective function, the characteristic quantities of
the structural response have been grouped into four homogeneous groups: static, kinematic, damage
descriptors and energy quantities. The first two groups are of interest for the serviceability and limit state of
the bridge, the third group characterize the low cycle fatigue of the dissipative device, whereas the fourth
group is representative of the overall structural behaviour. The spectra of all the above quantities have been
constructed and hierarchically ordered depending on their sensitivity against the variation of the design
variables v,, and on the smoothness of their own variation. The quantities showing the uppemost/lowermost
sensitiveness and more regular trends resulted in: 7., $max and &, (residual displacement), 4. and g4
(hysteretic ductility), Ey, and E,; (relative input energy). Among them the energy quantities showed the best
behaved thus being also the primary quantities to consider for insertion in the objective function.

OPTIMAL DESIGN

The approach followed attempts to solve a conflicting problem, searching the conditions for the maximum
exploitation of the dissipative device, the key element in the protection strategy, associated with the minimum
values of the bridge structural response and with the acceptable damage for the devices. To this end
multiobjective optimization, that allows for a vector-valued objective function, is used since it offers the
possibility to deal effectively with all the different, mutually conflicting, requirements inherent in the faced
design problem. The motivations for using the above approach in the optimal design are multifold: the
possibility to explore a broader range of alternatives than with conventional scalar minimization; a basis for
explicit trade-off between conflicting objectives; the possibility to add in a natural way further criteria in the
optimal design and more important the possibility to obtain not just a single solution point that does not give
design flexibility, but rather to get a solution in the form of a so called minimal curve that offers actrative
flexibility for design purposes. In fact, usually, there exist no unique point which would give an optimum for
all the criteria simultaneously, thus a new optimality concept, than that of scalar optimization, should be
introduced: a vector vp* is called a minimal solution if there exist no feasible vector vp which would decrease
some criterion without causing a simultaneous increase in at least one criterion.

Design Methodology

Several methods for solving nonlinear vector optimization have been presented in the literature (Duckstein,
1984). Usually the original problem is turned into a sequence of scalar optimization problems, which can be
solved numerically by applying numerical techniques of nonlinear programming. Among the available
methods, the "constraint method", capable to generate solutions even in non-convex cases, is here preferred,
because fits naturally the empirical procedure one would follow in the absence of appropriate numerical tools,



as will be clear in the next paragraph. In the "constraint method" the original vector optimization is replaced
by:

mn AV )
V€ £2(2(e)
where:
Q&)= {vy: v, € B, fi(vp)<e;, izk} (3)
and €= [€1, & ... &1, &kt oo £,1T is a vector of real numbers such that (&)= @. The set of design

variables collects the constitutive parameters of the dissipative device, as already said, whereas the vector
objective function f: R3— R4 is chosen so as to collect one representative quantity for each of the four
groups into which the characteristic quantities of the structural response have been divided:

Vo T [T, Ty K]T € 2= [Tpin <T< Tipax > Ty, min -<—77y S Ty, max > KminSKS Kmax) 4)

I =M, i} T= [-EDI, {max> Smaxs ,uc}]T (5)

In eqn. (5) the nondimensional index EDI = Ey/E; has been introduced to get a relative measure of the
dissipated energy with respect to the energy input by the earthquake. Since the proposed target is to maximize
the performance of the dissipative device, note the minus sign in eqn. (5), and since the results of the previous
paragraph indicate the energy quantities as the most suited for the purpose, the EDJ index is also selected as
the preferred criterion for the optimization f = -EDI, whereas the other criteria {f;} play restrictions to the set
of feasible solutions by keeping the structural response and the device damageability at minimum values.

Optimal Design Curves - Discussion of the Results

The following interpretation can be given to the above formulation: ED]/ is taken as scalar objective function
while {7nax Smaxs Hc) are constrained by suitably chosen constants &; by sistematic variation of these
constants the entire minimal solution curve, that is the optimal design curve, can be obtained. This kind of
approach is advantageous if a continuous monitoring of the solution is required. In fact, it is possible to start
the procedure with a standard scalar minimization if large values for ¢ are selected, so that the criteria {7,,,,,

$maxs Mc) do not initially affect the solution. Easy interpretable 2D plots of the solution can then be
constructed by letting one of the {7, My K} to act in turn as a parameter. It is found that these geometrical
representations does not vary significantly with x therefore, this latter design variable can be disregarded as
long as only EDI is concerned and the EDI surface representation can be limited to the 7- 1, subspace, fig. 1a.
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Fig. 1. EDI surface (spectrum profile C, v=5%) - (a) contour line plot; (b) cross sections at 7=¢.



This approach leads to a single minimum solution point vp*=(7=0.2, 7,=0.43, x=V) with no freedom for the
designer, fig. 1a; moreover, vp* does not always provide for a satisfactory engineering solution even if it falls
inside £2. In order to increase the designer choices an optimal solution curve can be constructed proceeding
exactly in the same way as for the "constraint method", but placing the constraints on the design variables.
Usually it is preferred to start fixing K, or equivalently 7, to account for the serviceability state of the bridge
and then find My according to eqn. (2). This means that one is looking at the stationary points vp* of the
curves EDI[ My T =¢, k="V). These curves are plotted in fig.1b for a discrete set of ¢ values. Now if the vp*
points are traced in the subspace T-ny {2 and the entire procedure is repeated for the two spectra (soil
profile A and C) and the three different sets of damping and friction values considered, the optimal design
graphs of fig. 2 are obtained. It is interesting to observe that analogous graphs can be constructed if the role
of Tand Ty is reverted and that these latter graphs are identical to those of fig. 2 only if the objective function
is strictly convex as in the present case where they both correspond to the ridge of the EDI surface of fig. 1a.
In the opposite case one should give preference to a period shift or force limited based design as the results
are no longer equivalent. However, if a single optimal point should be still selected one should preferably look
at the point vp*=(7=1.25, ny =0.17, k="V), fig. 2b, as compared to that of fig. 1a, which corresponds to the
point where the derivative of the optimal design curve strongly decrease approaching zero, thus indicating
that further gains in 7, as 7 increase are modest. The vp* points of the cross sections of the EDI surface at 7=
¢ are generally well defined, but some flatness of the curves can be observed specially for the lower periods,
fig. 1b. This means that points in the neighbour of vp* can have almost the same chances to be selected as
optimal design solutions, that is, the locus of feasible design range can be extended from a curve to an area if
points within a predefined tolerance with respect to vp* are equally well accepted as design points.
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The extended design locus, corresponding to a 5% tolerance is shown in fig. 3a. Finally, the last step to be
accomplished, for a full vector minimization, is to let decrease the contants & so as to span all the practical
values attainable by the other criteria {7y, $max #cjand to control consequently the restriction posed on the
optimal curves. Instead of presenting modified design curves, it is preferred to maintain the same
representation of fig. 3a and superimpose to the optimal design locus the corresponding ¢, and  loci, fig.
3a-b, so that the designer can perform a direct check of the alteration of the response quantities against a
modification of the design variables. The effects of the hardening parameter x;, no longer neglectable for the
other criteria, are shown separately in fig. 4 for the 7,,,, and &, curves.
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In conclusion, it is interesting to analyse the local behaviour of the solution in the neighbour of one point vp*
of the optimal curve. In fact, the emphasys given to £D/ in the minimization procedure would raise the
question wether this single index is actually capable to represent the whole bridge behaviour. A sketch is
given in fig. 5 where all the concerned quantities are plotted normalized at their respective values attained at
the optimal solution vp* = (7,=7],,, 7=¢). The local variation of the "constraint" criteria {7y, {max 4} is
given in the interval [nopt-IS%s 1y $r70pt+15%, T=const] of the stationary point EDI[vp*]. Note that, the
local behaviour of {7+, $max» Hc4 can also be inferred by the inspection of the curves in figs. 3a-b and 4
where it is apparent that the directional derivatives of ¢ .. and 4. and of 7, with respect to 7y, are
opposite in sign. Thereofore, it can be concluded that it is not possible a gain in 7,,, without a simultaneous
loss in ¢, and g and viceversa, consequently the optimal solution for EDI represents also the best
compromise for the combination of values of the other structural quantities. In other words, it appears
actually possible to achieve a multiobjective optimization through a scalar minimization based on a single
energy criterion synthetized by the index EDI.

CONCLUSIONS

It is has been presented a methodology for the optimal design of energy dissipation devices used for the
seismic protection of typical bridge structures. The adopted formulation attempts to solve the problem of
searching the conditions of maximum exploitation of the dissipative device, the key element in the protection
scheme, yet complying with practical constraints related to the bridge and device behaviour, and develops
according to a sequence of scalar minimization aiming at reconstructing a full multiobjective optimization that
proves very effective in dealing with simultaneous mutually conflicting criteria such as those above concerned.
The adopted model accounts for the nonlinear interaction between bridge deck and substructure and for
friction in the bearings and the numerical analyses have been carried out using 10 spectrum compatible



artificial accelerograms defined according to the EC8 indications. The results of the investigations indicate
that it is possible tc construct optimal design graphs which allow for a simple selection of the design
parameters of the dissipative device, while respecting predefined constraints required by the serviceability and
limit states of both the bridge and the dissipative device. Finally it is worth noting that although the
methodolgy is illustrated with reference to a particular, yet typical, case, it has the potential to be easily
generalized to more complex protection schemes and to incorporate different, problem oriented, optimality
criteria than those here concerned.
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