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ABSTRACT

A systematic procedure to construct the (symmetric) static-stiffness, damping and mass matrices representing
the unbounded medium is presented addressing the unit-impulse response matrix corresponding to the degrees
of freedom on the structure-medium interface. The unit-impulse response matrix is first diagonalized which
then permits each term to be modelled independently from the others using expansions in a series of Legendre
polynomials in the time domain. This leads to a rational approximation in the frequency domain of the
dynamic-stiffness coefficient. Using a lumped-parameter model which provides physical insight the property
matrices are constructed.
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INTRODUCTION

To analyse the dynamic interaction of a structure with the adjacent unbounded (semi-infinite) medium, the
two substructures are coupled on the structure-medium interface.
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Fig. 1. Interaction force-displacement relationship on structure-medium interface of unbounded medium

The modelling of the bounded non-linear structure with finite elements is well understood resulting in the
banded static-stiffness, damping and mass matrices called the property matrices, corresponding to a finite
number of degrees of freedom. The representation of the unbounded linear medium is also possible,
introducing the wnit-impulse response matrix [S(f)]. The interaction force {R(?)} -displacement {u(¢)}



relationship with respect to the degrees of freedom of the nodes on the structure-medium interface of the
unbounded medium is global in space and time (Fig. 1) (Wolf 1988)

{RO} = [Ko [} +[Co @} +{R, (O} (1)

The first two terms on the right-hand side representing the instantaneous response define the singular part
with [K«] and [C.] denoting the high-frequency limit (w — «) of the dynamic-stiffness matrix [S(w)] The
third term describing the lingering response is equal to the regular part (subscript 7) consisting of the
convolution integral of the corresponding unit-impulse response matrix [S, ()] and the displacement vector

{R(0) = {15 - D) @

The interaction forces at a specific time depend on the time histories of the displacements in all nodes from
the start of the excitation onwards. In this rigorous formulation a large computational effort (proportional to
the square of the number of time stations) and storage requirement result.

To reduce the computational effort, concepts of linear system theory can be applied. These consist of
introducing a rational approximation of the dynamic-stiffness matrix [S(w)], i.e. each coefficient is a ratio of
two polynomials in i@ . In Paronesso and Wolf (1995) a procedure is described to construct the property
matrices of the unbounded medium starting from [S(w)]. A diagonalization is first performed which permits
scalars to be addressed without any approximation. After the rational approximation the property matrices are
constructed using lumped-parameter models without introducing any additional approximation.

It is the goal of the present paper to summarise an analogous formulation using as starting point the regular
part of the unit-impulse response matrix [S, (t ,-)], which for computational efficiency is only available for

tjstmax .

The diagonalization transforms [S,(9)] of order NxN to the diagonal matrix [S” ()] of order Nx(N+1)/2
rigorously with the matrix [7’] which is time independent

[S:O]=[T1[Sr O] (1T €))

[T1" plays the role of a kinematic matrix. This corresponds to the following transformation
{un (O} = [TT {u(t)} (42) {R,®} =1T1{R"®)} (4b)
where {u” ()} and {R7(»)} are the input and the output vectors of the diagonal form. After the rational

approximation to be discussed in the next section the property matrices [AM], [C] and [K] are determined
yielding the symmetric second-order differential equation

0 0 won ({0}
(Ml { {z'i(t)}} +lcl {{a(t)}} +1xl {{u(t)}} = {{R(t)}} ®)

with the internal variables {w(#)}. For details of the diagonalization and the construction of the property
matrices Paronesso and Wolf (1995) should be consulted.



SYSTEM IDENTIFICATION

Rational Approximation

The input-output relationship is formulated for each term of [S7®)] in (3) as
4
RY@=[Sr¢ - um(z) dr (6)
0

To construct a rational function in the frequency domain representing an approximation for the dynamic-
stiffness coefficient, elements of linear system identification are applied. For a chosen input u™(t) (1 stmax),
the output RY(f) (t;<tmax) can be calculated evaluating the convolution integral of (6). An input-output pair
is thus available for #;<Zma, which is the starting point in system identification where it is customary to
measure the output for a given input. This theory leads to a linear dynamic system described by a finite

number of parameters. The corresponding dynamic-stiffness coefficient will be a rational function. Both
um(?) and R(f) are expanded in a series of Legendre polynomials (Chang and Wang, 1982). The
coeflicients of this series permit the unknown coefficients of the rational function to be determined.

Starting from the basic polynomials 1, ¢, #2,..., and applying orthogonalization for #;<tma yield the set of
(shifted) Legendre polynomials ¢; () (i =0, 1,2,....). They can be constructed for ;<fmax recursively using

@ =1 (7a) ) =2———1 (7b)

max

2i+1( t ) i )
+1(2) = — 1| (t) - —— i1 (¢ >1
@i+1(1) 1 2tmax @ (?) 1% 1(?) i (70)

The Legendre polynomials form a complete set. They are orthogonal

To@ ¢, = 2= 5, ®)
0

Tmax
2i+1

where &; is the Kroneker delta (&;=1 for i=j and =0 for i#j). Any function S(® which is square integrable
over the interval 0 <7 <fma can be expanded in a Legendre series with £ terms

0= 00) ©
where based on the orthogonality property
o =2 Trw poar (10)
In vector form, (9) is formulated as
FO= {3 {o®) 11

The integral of {p()} can be written as

{w(t)}}

{{o) ar=[ 11 { o’

(12)

with the so-called operational matrix of integration for the Legendre polynomials [L] of order ¢x¢
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(12) is derived based on properties of the Legendre polynomials. It can be verified straightforwardly through
integration. From the last row of (12) it follows that the integration of a Legendre polynomial of degree £ -1
results in a linear combination of Legendre polynomials of degrees £—2 and ¢ with the coefficients
=1/@2@2¢-1) and 1/(2(2¢£- 1) respectively (last lines of equations (13) and (14)).In the derivation{ L} is
suppressed yielding from (12)

‘I) {0} ar = [L]{p()} (15)
For a large ¢ the neglected term 1/(2(2¢ - 1)) in (14) tends to zero. Integrating (15) & times results in
o) ar =111 {p0) 19
k times

The regular part of the unit-impulse response coefficient S7(¢) in (6) is approximated as that corresponding
to an ordinary differential equation of order M for the output R”(¢), whereby derivatives up to M-1 for the
input «™(z) are present

dRP()  dRPG) dMRIGQ)
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All 2M unknown coefficients qo, ... pas-1 are constant and real. Note that the coefficient of dM™ R™ (1) / dtM
is selected as one. In the algorithm the order A/ must be chosen.

The Fourier transformation of (17) leads to the input-output relationship in the frequency domain
Rr(w) = SPGo)u™(@) (18)

where the approximated regular part of the dynamic-stiffness coefficient equals

SP(iw) = 20 +P1(i60’)+P2(iaT)2 +pM—1'(iaJ)M—l (19)

go + q1(io) + g2 (iw)* +.. +H(iw)™
S (iw) is a rational function in iw with the coefficients qo, ... pm-1 where the degrees of the polynomials in
the denominator and the numerator are equal to M and M-1, respectively. For the limit of iw — o the
approximation of the regular part tends to zero. The approximate dynamic-stiffness coefficient is thus exact in
the high-frequency limit (asymptotic behaviour).



For a specified u™(?), the output R™(#) is calculated by evaluating the convolution integral in (6). Both
u™(?) and R/ (t) are then expanded in a Legendre series with £ terms (11)
u () = {cu} " {p®} (20) R"(@) = {cr}" {p(0)} 21

with the coefficients ¢, and cz determined from (10).

To determine the coefficients qo, ... par-1, (17) is integrated M times, which transforms the differential
equation of M-th order to an integral equation. For vanishing initial conditions (17) is transformed to

t t t
qgo gR,’”(t)dt + q (J;R,"’(t)dt + q (J;R,"’(t)dt + - + RI'D=

M times M ~1times M=2 times

(22)

t t

t t
po Jum@®d + p fur()dt + py Jum(dt + .. + Ppu-1fum()dt
0 0 0 0

M times M =1times M~2 times

Substituting the Legendre series expansions of #™(f) (20) and R™(?) (21) in (22) and using (16) lead to

[ Q2T Cer) ALY Hend o= LT e (L) el (LT e} 5 ILF(ad] [ 9 ) = {en)

(Pm-1]
(23)

The coefficient matrix of (23) is of order £x2M. For a solution £ >2M must be selected. For £>2M the
overdeterminated equation is solved using the least-squares procedure yielding the coefficients of the rational
approximation qo, ... pa-1 in (19). For a well conditioned system M<12 must be chosen, as the numerical

rank of the eigenvector matrix of [L]” (which can be diagonalized) does not exceed 24.

Optimum Implementation

The selected input is formulated as
- a
a —t
u™(t) =a—e'mx  H(¢) (24)
t max
with the Heaviside step function H(r). « is dimensionless. The constant a, with the dimension length times
time, represents the integral [u™(¢) dt which is selected as one and is thus independent from a. For the limit
0

a—> 0, u™() tends to the Dirac delta function 5(¢) . The more o diminishes, the more empbhasis is placed
on u™(w) at small @ at the cost of that at large o .

An input defined as a Dirac-delta function 5(f) can be selected as an alternative. For an expansion of &(¢) in
a Legendre series, the coefficients equal (10)



2i+1

max

Cui = @(0) =0, .¢-1 (25)

with the Legendre polynomials at /=0 (7)
@ (0)=(-1) (26)

The convolution integral to determine the output (6) is avoided, as

R =8"®) (27)
applies, i.e. an expansion in a Legendre series is calculated directly for S ().

Numerical experience indicates that the i-th row of the overdeterminated system (23) in the case of the input
being equal to () must be multiplied by 1/|cu|=fma /(2 +1) Thus, a weighted least-squares
approximation is performed with a diagonal weighting matrix.

The static-stiffness coefficient K™ can also be enforced, making the rational approximation doubly
asymptotic. For the implementation, enforcing K™ corresponds to equating S7"(iw =0) in (19) to
K™ —~ K2 . This yields

2 _km-kz 28)

qo

The number of unknowns is thus reduced by one. This condition can be directly introduced in (23) by e.g.
eliminating po .

As a stringent test of a dispersive system with a cutoff frequency, the one-dimensional semi-infinite rod with
area A, modulus of elasticity E, mass density p resting on an elastic foundation with the spring stiffness kg

(Fig. 2) is analysed. The analytical solutions for S(ao) and S, () at the beginning of the rod in point 0 are

derived in Wolf (1988) with the dimensionless frequency ao = wy/Ap/k, and time 7 =1 kg / (Ap). The
cutoff frequency equals ap=1.

i 0.6
72}
% O A EXACT
AE P 5 T | K ENFORCED
=) wmwm—n K NOT ENFORCED
—> 00—) --------------------------------- ->00 = -
[ [ [ ’ & 00 e o Dy T

E \ 7
E:' 2 I 1 | | | |

. ) S P T - -

2_k a % 0 5 10 | 20 25 30
g

DIMENSIONLESS TIME 7

Fig. 2. Semi-infinite rod on elastic foundation Fig. 3. Regular part of unit-impulse response
coefficient

The analysis is performed for M=4 and ¢=30 with 7ne =5, which is a small value. As input the Dirac delta
function 5(¢) is used. The influence of enforcing the static-stiffness coefficient X is examined. The regular
part of the unit-impulse response coefficient S, (7) is compared in Fig. 3 and the total dynamic-stiffness

coefficient S(ao) normalized by K and decomposed in the spring coefficient k(ao) and the damping
coefficient c(ao) in Fig. 4. When K is not enforced in the rational approximation, large deviations exist in
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Fig 4. Total dynamic-stiffness coefficient

S, (@) for 7>5 which results in inaccurate S(a) for ap<l. A drastic improvement results when the static-
stiffness coefficient X is enforced.

IN-PLANE MOTION OF LAYER FIXED AT ITS BASE

The in-plane motion of a semi-infinite layer with a free and a fixed boundary extending to infinity of constant
depth d, shear modulus G, Poisson's ratio =1/3 and mass density p is examined (Fig. 5). On the vertical
structure-medium interface 8 line finite elements, each with 3 nodes, are introduced (not shown) in the
consistent infinitesimal finite-element cell method (Song and Wolf, 1996). This discretization permits an
adequate modelling up to the dimensionless frequency ao =w d/c, =257 (¢, = m ). To reduce the data
for the examination, 4 nodes with the numbers shown in Fig. 5 with piecewise linear displacements are
introduced, and the corresponding reduction is performed based on virtual-work considerations. This leads to
the corresponding matrices [, (?)] and [S(ao)] of order 8 x 8 with the dimensionless time f =¢c¢;/d. These
results are denoted as rigorous. The cutoff frequency of the layer corresponds to ag = 7 /2.
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Fig. 5. Semi-infinite layer fixed at its base

The analysis is performed for the degree of the rational approximation A/=12, and the number of terms in the
Legendre expansion is selected as ¢ =40. The maximum dimensionless time is equal to 7max=10. As input, the
exponential function specified in (24) with =10 is chosen.

To check the accuracy in the frequency domain, the total dynamic-stiffness coefficient S1;(ao), relating the
horizontal displacement in node 1 to the horizontal interaction force in the same node, and Sis(ay), relating
the vertical displacement in node 4 to the horizontal interaction force in node 1, are examined. Both dynamic-
stiffness coefficients are non-dimensionalized by the static-stiffness coefficient K7; and then decomposed into
a spring coefficient k(ao) and a damping coefficient c(ao) . From the comparison shown in Figs. 6 and 7, it
follows that although the rigorous results vary significantly the rational approximation up to ap =10 is good.
The range ap >10 should hardly affect the seismic response.
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Fig. 6. Total dynamic-stiffness coefficient Si;(aq)
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Fig. 7. Total dynamic-stiffness coefficient Sis(ao)

CONCLUSIONS

The presented procedure using the unit-impulse response matrix in the time domain with Legendre
polynomials is analogous to the least-squares method addressing the dynamic-stiffness matrix in the frequency
domain, both yielding a rational approximation in the frequency domain.

The unbounded medium is modelled in the same manner as the structure consisting of (symmetric) static-stiff-
ness, damping and mass matrices. The same computer program can be used for dynamic unbounded medium-
structure-interaction analysis as for structural dynamics.
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