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ABSTRACT

At 5:46 a.m. (local time) on January 17, 1995, the Great Hanshin (Hyogo-Ken Nanbu or Kobe) earthquake hit the
Hanshin-Awaji area, Japan. The damage due to this earthquake was the worst earthquake clisaster in Japan since the
1923 Great Kanto earthquake. Over 100,000 houses and buildings collapsed and many mcdern civil infrastructures
such as elevated bridges of highways and railways, and port facilities, etc. were also heavily damaged. In addition,
fires broke out razing many houses after the quake. The death toll was more than 6,30C including deaths due to
various problems following the earthquake. Unfortunately, most deaths were caused due to collapse of structures. To
mitigate casualties due to earthquakes, it is important to study the mechanism of collapse of structures during earth-
quakes. In this study, using the Extended Distinct Element Method (EDEM), which is applicable to both a composite
and continuous medium, and a perfect discrete one, the collapse mechanism of structures during the 1995 Great
Hanshin earthquake is studied. Although the phenomena treated in this study were difficult to be simulated by the
conventional methods such as the finite element method, the numerical results obtained agree well with the actual
earthquake damage.
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INTRODUCTION

To mitigate casualties due to earthquakes, it is important to study the mechanism of collapse of structures during
earthquakes. The Great Hanshin earthquake on 17 January, 1995 caused over 100,000 collapsed houses and build-
ings, many heavily damaged civil infrastructures, and more than 6,300 deaths. Most of the deaths were due to
collapse of structures.

To assure the safety of the general public in the event of future earthquakes, it is vital to analyze the collapse of
structures. The process which is used in analyzing the behavior of structures in a collapse, addressing the problems
such as, "Where and how do they undergo collapse?”, "Is the time of collapse short or long?", "How far would the
fragments of structural members fly and/or move in the process of collapse?”, and "Would the collapse of structures
be partial or overall?", is expected to greatly reduce the domains of structure collapse behavioral uncertainties. It is
hoped that the knowledge of engineering concerned with collapse of structures will pave way in bringing forth
approachs which could clarify these uncertainties. For example, we may undertake such architectural designs which
allow partial structural collapse but prevent complete collapse. The means of such an analysis at present is the Ex-
tended (or Modified) Distinct Element Method (EDEM, MDEM) (Iwashita and Hakuno, 1990, Meguro et al., 1988,
Meguro et al., 1991) which were developed from the distinct element method (Cundall, 1971).
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In this study, using the EDEM, the mechanism of collapse of structures during the 1995 Grzat Hanshin earthquake is
studied by simulating various modes of collapse process reported after the quake.

EXTENDED DISTINCT ELEMENT METHOD

Although the conventional distinct element method (DEM) used in geotechnical engineering has proved very useful,
only a few applications are heard in other media (Meguro and Hakuno, 1989a, Meguro and Hakuno, 1992, Meguro
and Hakuno, 1994). The use of DEM was extended to the fracture analysis of structures, usually analyzed only by the
methods based on continuum equations such as the FEM. The EDEM was originally developed by the research group
including the first author of the paper. A computer algorithm has been written which can be used both for geotechni-
cal engineering and for various other media as well. This method maintains continuity of the elements because it
includes the additional spring called pore-spring or joint-spring which represents the effects of the material surround-
ing the elements. Figure 1 shows the EDE modelling.

The equations of motion of an element, i, having the mass, mi, and the moment of nertia, fi, are
mi - d’u/df? + Ci - du/dt + Fi =0 (1)
Ii - d®¢/df’ + Di - deyde+ Mi=0 2)

in which Fi is the sum of all the forces acting on the element; Mi the sum of all the moments acting on it; Ci and Di the
damping coefficients; u the displacement vector; and ¢ the rotational displacement.

The time histories of u and ¢ are obtained step-by-step in the time domain by the explicit numerical integration of
equations (1) and (2).

As forces acting on an element are of two kinds, Fi and Mi are expressed as
Fi =Fie + Fip + mi (g+0a) 3
Mi =Mie + Mip 4)

where Fie is the sum of forces from all the elements in contact; and Fip, from all the material surrounding it. Mie and
Mip are the sums of all the moments from all the elements in contact and from all the material surrounding it respec-
tively. These forces are obtained from the deformations of the element and pore-springs (joint-springs) set in the
normal and tangential directions. In equation (3), g is the acceleration due to gravity and o is the external acceleration
acting on it. As the fracture criterion of the pore-spring, a critical tensile strain (f) is spec:fied in the normal direc-
tion, and Coulomb's equation is used in the tangential direction.

A new concept regarding the application of the EDEM is also proposed in this study: the EDEM can be taken as an
extended lumped mass system, the field of application of which is extended to the discontinuous media, unlike the
standard lumped mass system which is applicable only to the continuous media.

The EDEM is a conceptual model realized with a unique idea incorporated, wherein elements are each recognized as
a unitary element of motion, a key to solve the equation of motion, and an interaction among elements is regarded as
a spring action. In another aspect, the EDEM is taken as a lumped mass system, a subsystem: of the composite, multi-
degree-of-freedom (MDOF) system. Reference will now be made to "What is the most outstanding difference be-
tween the lumped mass system branched off from the MDOF system which is generally applied as a means for the
dynamic response analysis, and the EDEM system?" The difference lies between the respective system configura-
tions, the former being characterized in that only continuous bodies can be analyzed while the latter, featuring its
configuration, enables behavioral tracking over such a scope from a continuous body to a discontinuous body. Taking
note of this system configuration, the
EDEM system may be grasped as a means
for the response analysis (extended
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Fig. 3(a). Seismic response analysis of a slender building

Fig. 3(b). Time-history of response velocity
(Horizontal comp. with Case 1)

(Casel: Example of earthquake damage to weak-beam-type buildings)
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Fig. 4. Seismic response analysis of a slender building
(Case 2: Example of earthquake damage to weak-colomn-type buildings)
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Fig. 5. Seismic response analysis of a slender building
(Case 3: Collapse of a slender building due to rescnance)




cance in engineering, are required to be clarified, there is no need to model at the material level involving a large
number of elements. In such a case, it is useful to consider the EDEM as an extended MDOF system, which can be
applied to the collapse behavior of structure.

The dynamic response analysis by the conventional MDOF system is very difficult when analyzing the dynamic behav-
ior in the stage of structural collapse initiation or in the process wherein structural collapse is progressing. However,
the dynamic response analysis following the EDEM system allows us to simulate the collapse behavior of structures
from a sound state to a complete collapse. Therefore, with the EDEM system dynamic response analysis, the structural
vibration characteristics can vary with the outbreak of collapse, and keeping pace with the progress of collapse can
phenomenally be illustrated in a state of spontaneity.

Examples of the EDE simulation are shown in Figs. 2 to 5 (Meguro and Hakuno, 1989b). These are the analyses of
dynamic behavior of the slender structures due to excitation. In case of the simulation using the model of case 1,
cracks appear at the left and/or right beam-column connections of the 2nd and 3rd floors at 7.75 sec (Fig. 3 (a)). The
effects of appearance and slips between the cracks can be seen in the velocity response at the joint corners. Because of

the damage due to cracks, dynamic properties of the structure system is changed. Its natural period become longer as
shown in Fig. 3 (b).

NUMERICAL RESULTS

To study the mechanism of collapse of structures due to past earthquakes, Meguro and Hakuno simulated various
modes of collapsed structures, some of which are shown in Figs. 6 to 8 (Hakuno and Meguro, 1993). After the 1995
Great Hanshin earthquake, these types of structural collapse were observed in the affected areas (Photos 1-3).

In addition to the collapse of houses and building structures, elevated bridges of highways and railways were also
severely damaged due to the 1995 Great Hanshin earthquake. Since the earthquake occurred early in the morning,
fortunately, casualties due to the damage of civil infrastructures such as highways and railways were not so many. If
the earthquake had hit during daytime when the people were outside and using infrastructures, many people may have
been killed or severely injured due to the collapse of these structures. Photos 4 and 5 show the collapse of elevated
bridges of Hanshin Expressway. Considering the damage in Photo 4, although the piers didn't collapse but suffered
some damage at the bottom, two adjacent simple-beam decks fell down due to dislocation of the bearing supports (Fig.
9). Seventeen piers spanning about 630 m of pilz-type bridges were destroyed and the bridges collapsed (Photo 5). To
study the collapse mechanism of these elevated bridges, the fracture process of the damage was simulated using the
EDEM.

Fig. 6. EDE simulation of the tumbling-type collapse



Figures 10 and 11 show the damaged elevated bridge models for EDE simulation. Considering the fracture mode of
the damage and computational time, we reduced the number of elements used and made the model simple. Since the
ground motion at these sites were not recorded, numerical integrated displacement motion from the North-South (N-
S) and East-West (E-W) components of the ground acceleration records at Kobe Marine Meteorological Observatory

were used in the simulation (Fig. 12).

Using the model in Fig. 10, three cases of simulation with and without consideration of time lag due to wave propa-
gation were simulated. Namely, one case without input time lag, and two cases with the lag based on the assumption

that the wave in Fig. 12 (b) propagated from the left (east) to the right (west) with two different shear velocities (124
m/s and 296 m/s) estimated from the N values of the ground.
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Fig. 7. EDE simulation of the damage
to the first floor collapse-type

Photo 3 Damage to an intermediate
floor collapse-type
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(a) Fallen two adjacent simple-beam decks

Fig. 8. EDE simulation of
the damage to an
intermediate floor
collapse-type

(b) Damaged bottom of the pier, P1
Photo 4 (a) Damage to elevated expressway bridge
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Fig. 9. Collapse mode of elevated bridge in Photo 4



In the case without input time lag there was no collision between decks while in other two cases, decks hit each other.
Figure 13 shows the displacement responses of each girder in case of Vs=124 m/s. Collision between decks can be
seen in the response and its effects on the deck is shown at the response acceleration of the deck (Fig. 14). Figures. 15
and 16 are the time-history of the forces acting on fixed bearing between P1 and S2 and the bottom of pier P1, respec-
tively. In the cases with input time lag, impact loads acting on the piers and shoes are seen and they might cause the
destruction of shoes and bottom of the piers (Photo 4(b)). These results in Figs. 13 to 15 are linear response analyses
in which pore-springs set between elements are not destroyed. Figure 17 shows the fracture process in case of Vs=124
m/s. Two simply supported decks of the elevated bridge fell down. The collapse mode obtained here is very similar to
that of actual damage as shown in Photo 4. The difference between actual case and simulation is that S3 and S4 decks
fell down in real damage, while S2 and S3 did in the simulation. Considering the uncertainties of input ground motions
and some boundary conditions, this simulation result explains the mechanism of the damage as shown in Photo 4.

With the model in Fig. 11, collapse process of the damage to elevated expressway bridges due to overturning was
simulated. This was the symbolic damage during the Great Hanshin earthquake shown in Photo 5. As an input motion,
the ground motion in Fig. 12(a) was adopted. Simulation of collapse process is shown in Fig. 18. With time, the bridge
inclined and finally, overturned. Although the exact collapse process is not reported, the final collapse mode obtained
in this study agrees with that of the real damage.
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CONCLUSION

Using the EDEM, we tried to simulate the collapse process of structures due to the 1995 Great Hanshin earthquake in
order to study the mechanism of the damage. These simulations are based on the new ccncept of the EDEM applica-
tion in which the EDEM is taken as an enhanced lumped mass system. Although the phenomena treated in this study
were difficult to be simulated by the conventional methods such as the finite element method, the numerical results
obtained by the EDEM agree well with the real earthquake damage.

Examining the simulation results, a conclusion can be drawn that the macro models of these structures would be
capable of demonstrating to some extent as to how structures would undergo local collepse, whereby the models be
allowed to account for the process or the mechanism of actual earthquake-caused structural collapse with certain
accuracy. Although the EDEM is required to go through improvements over various points, the results for fracture as
a whole, generally replicate observed earthquake damage.
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Stage 1: All fixed bearings on the piers from P1 to P5 were destroryed. Deck S5 started to move to the left
due to the collision with S6.
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Stage 5: The right edges of S2 and S3 decks fell down showing the samie collapse modeof the actual damage in Photo 4.

Fig. 17(a). EDE Simulation of collapse process of elevated expressway bridges
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Fig. 18. EDE simulation of collapse process of pilz-type elevated expressway bridges
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