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ABSTRACT

This paper deals with quantitative evaluation of nonlinear soil deposit response estimates. Its main objective is
the formulation of an approximate model for the evaluation of site-specific response estimates in an
approximate but acceptable form for practical design purposes. The emphasis is on investigating the effect of
the intensity of excitation on the earthquake motion characteristics at the free field. A suite of 30 soil profiles
is analyzed using one-dimensional wave propagation model and random vibration theory concept. Results
obtained from this analysis are statistically analyzed and numerical expressions for the estimation of
equivalent fundamental period and damping coefficient are derived. Using these expressions it is possible to
evaluate the free field response estimates as a function of local soil deposit parameters and input motion level.
Results presented in this study indicate that this new formulation can be used for estimating input motion
intensity dependent site-specific response spectra for design purposes and improving site-dependent building-
code provisions.
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EARTHQUAKE RESPONSE ANALYSIS OF SOIL DEPOSITS SUBJECTED TO
RANDOM EXCITATION

In the first part of this study one-dimensional wave propagation model ( 1DM ) and random vibration theory
concept (Myslimaj, 1995) are used for the evaluation of nonlinear response estimates for all soil deposits
considered, which are conveniently assumed to be horizontally layered. Strain dependence of shear modulus G
and hysteretic damping coefficient £ for each layer are taken into account by using the hysteretic model
developed by Ohsaki et al. (Ohsaki et al., 1978). The modified Markov spectrum (Aoyama and Matsushima
1993), representing the double-sided shear wave acceleration power spectral-density function S,(w) and
given by
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1s assumed as input motion at the top surface of the base layer. S, represents the level of power spectral-



density, while @, and @, represent two corner frequencies. The later is related to the so-called @, , which
appears in the observed strong ground motions.

The values of two corner frequencies, @, = 2zf, and @,, =27f,, , were estimated by making use of nonlinear
least squares technique in fitting the average acceleration power spectrum of widely used strong ground
motions recorded on the free field to a model given by (Aoyama, 1994)
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where @=22f and & are the soil deposit transfer function parameters and can be considered as some
characteristic ground frequency and characteristic damping ratio, respectively. The values for the best-fit
model parameters ®,, @,,, @ and h were found to be (Aoyama, 1994) 0.886s~, 47.04s", 13.125s™" and
0.640, respectively.

The squared mean value of acceleration A can be obtained by the following integral of its double-sided power
spectral-density function:
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where £=0,, /@, .
From the equation ( 3 ) S, can be derived as follows :
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having o, as a variable parameter. In this study, 10 levels of o, are considered :0, =10, 20, ..., 100cm /s>

SOIL DEPOSIT DATA CONSIDERED

30 soil profiles, selected from the structural design reports of high rise buildings submitted to The Building
Center of Japan during 1990 ~ 1993, were chosen as object of this study (Myslimaj, 1995). Soil deposit data
selection was carefully done in order to have wide variation in soil categories, i.e., from hard to soft ones, and
in their location. Base layer was settled at the layer whose elastic shear wave velocity V, satisfies the condition
Vs 2400m/ s. Each layer was classified to be either clay or sand, based on the material type content. Viscous
damping of 2% was assumed for the material damping in soil at initial condition. The elastic first period of
vibration 7; was estimated for all soil deposits, by making use of transfer function analysis. Its dispersion
range resulted to be within the interval 0.11s ~ 1.21s . On the basis of 7 value, soil deposits were classified in
three categories, as it 1s shown in Table 1.

Table 1. Classification of so1l deposit data considered.

SOIL I NUMBER OF SOIL
CATEGORY VALUE DEPOSITS
HARD 1 <0.3s 8
MEDIUM 03s<7,<0.7s 13
SOFT 1,>0.7s 9




THE APPROXIMATE MODEL FOR THE EVALUATION OF RESPONSE
OF SOIL DEPOSITS

The formulation of the approximate model ( APM ) for the evaluation of site-specific response estimates is
based on the lumped mass model. On the basis of this model, taking into account only the first two modes of
vibration, an approximate estimation for the free field complex transfer function of a given soil deposit can be
obtained by making use of expression ( 5 ), in which the variation of transfer function parameters due to the
change of input motion level o, is also considered (Myslimaj, 1995).
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From the expression ( 5 ) it can be seen that an approximate estimation of H,,(@,0,) requires first the
determination of free field participation function of the first and second mode of vibration ¥,, \¥,, angular

frequencies @,(o,), ®,(0,) and total damping coefficients of the first two modes of vibration 4(o,),
h,(o,) , which is shown in the next paragraph.

Frequency, Participation Function and Damping Estimation.

Having known in advance the transfer function for each layer one can easily evaluate the frequency,
participation function and the damping ratio of a given soil deposit. In this paragraph, results of analysis
obtained by one-dimensional model are used for this purpose.

The fundamental frequency @, can be found out from the transfer function analysis, that is, finding the
smallest frequency among all frequencies corresponding to the peak values appeared in the transfer function of
free field |H (o, O'A)|. On doing this for linear analysis and nonlinear one ( o, =10cm/s* ~

o, =100cm/s* ), the variation of fundamental frequency due to the change of the level of input motion o,
can be obtained. Results of this analysis for all soil deposit models, normalized by the linear fundamental
frequency @,, =27 f,,, are shown in Fig. 1.

The total damping of first mode of vibration can be approximately evaluated by making use of the following
expression:
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where IHN,(51)| is the peak value of the free field transfer function corresponding to the fundamental
frequency @, and ‘¥, is the free field participation function of fundamental mode of vibration, given by
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where
m, - mass of the i-th layer;
|Hy; (@,)| - ordinate of the i-th layer transfer function at @ = ®,.
By making use of transfer function analysis results it is also possible to evaluate hysteretic damping of a soil
deposit from its fundamental mode of vibration using the following relation:
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where
B, - hysteretic damping coefficient of i-th layer;,
G, - shear modulus of i-th layer;
|Hy, (@,)| - ordinate of the i-th layer transfer function at @ = @;;

|H Nis1 (5,)[ - ordinate of the (i+1)-th layer transfer function at @ = @,.

Using the above presented expressions for the linear analysis and the nonlinear one ( o, =10cm/s* ~
o, =100cm/s* ), the variation of A, ‘¥| and A, due to the change of &, can be obtained. Results of this
analysis for all soil deposit models are shown in Figs. 2 ~ 4. In case of 4, ( Fig. 2), results are normalized by
linear total damping ’71,0 while in case of ¥, (Fig. 3 ) and A, (Fig. 4 ) no normalization has been done.
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Fig. 3. Participation function variation. Fig. 4. Hysteretic damping variation.

Above presented results obtained for damping variation indicate a larger dispersion in case of total damping
estimation ( Fig. 2 ) compared to that one of hysteretic damping ( Fig. 4 ). The least dispersion is seen in case
of fundamental frequency estimation ( Fig. 1). On the other hand, results of ‘¥, estimation for all soil deposits
considered ( Fig. 3 ) do indicate that increase of o, doesn't affect almost at all the value of ‘. In this case, for
a single soil deposit ‘¥, fluctuates around a value of 2.74, which is large compared to the ‘P, values of all other
soil deposits considered. Most likely, this is related to the fact that in case of this soil deposit model there is an
abrupt change between the rigidities of the upper part layers and the lower part ones. The mean value,
standard deviation and coefficient of variation for ‘F; resulted to be 1.44, 0.271 and 0.189 respectively, when
all soil deposit models were considered in their estimation. On the other hand, in case when from the total
number of samples the above mentioned sample was excluded ( being thought of as a sample of different type

from all 29 others ) the following respective values for mean, standard deviation and coefficient of variation
were obtained: 1.39,0.111, and 0.080.



It is important to notice here that the latter mean value of ‘¥, is in satisfactory agreement with the estimation of
P, obtained on the basis of a cosine shape assumption for the fundamental mode of vibration of a soil deposit.
This estimation gives for ‘¥, the constant 4/ 7 or 1.273. The assumption for a cosine shape of the modes of
vibration can be further used for the estimation of the frequency of the second mode of vibration, providing
that in this case @,/ ®, =3.0. This value for the ratio @, /@, satisfactorily agrees with the mean value of
@, / @, obtained from the linear transfer function analysis of all soil deposits, which resulted to be 2.92.

From the above given comments it can be concluded as follows:
- Fundamental mode participation function at the free field ‘¥, can be assumed 4/ z;
- o, dependency of fundamental frequency and hysteretic damping seem to be as more appropriate for the
determination of o, dependency of total damping.

On the basis of the above presented numerical results, the following models were formulated for the o,
dependency of fundamental frequency and hysteretic damping:

ﬁ(aA)= 1 (9)
fio l+a-(o,/g)

h(o,)=c(0,/g8)" (10)
where
o, - standard deviation of incident acceleration;
g - gravity acceleration;

/1o - linear fundamental frequency, given by V,/4H, where V, is the average shear wave velocity of the
soil deposit and H 1is its depth;
a,b,c,d - non-dimensional constants determined so that numerical data mostly agree with the proposed
models .

The values for the best-fit models' parameters a,b and ¢,d were estimated by making use of nonlinear least
squares technique in fitting respective numerical data to the models given by ( 9 ) and ( 10 ), respectively.
They were found to be: a=5.85, 5=0.943, ¢=0.661 and d =0.722. In the use of nonlinear least squares
technique the standard deviation of f,(c,)/ f,, and A,(c,) were both assumed variable ( Ang and Tang,
1975) and two nonlinear functions were respectively supplied in fitting their respective standard deviations of
numerical data (Myslimaj, 1995).
In Figs. 5 and 6 are shown the numerical data (circles ), best-fit model ( solid line ) and best-fit model
tstandard deviation ( dotted line ) for the frequency case and hysteretic damping case, respectively.
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In case of soils, total damping is given by
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where h,, hand h, are respectively hysteretic damping, radiation damping and viscous damping. Therefore
for the first mode of vibration the equation ( 11 ) becomes
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where

p, - the average mass density;

pp - mass density of the base layer;

V, - shear wave velocity of the base layer,

h, , - initial viscous damping coefficient, assumed to be 0.02.

For the evaluation of the total damping of the second mode of vibration the following expression can be used:
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assuming that o, dependency of @, holds the same as in case of @,(0,) and @,/ ®, =3.0. Moreover, since
hysteretic damping A, , radiation damping /4, and viscous damping A, are respectively proportional to @°, @™

and @', proportionality coefficients 1, @,/ @, and @, /@, are used as multiplication factor for #,, &, and A,,
respectively first, second and third term on the right hand side of ( 13 ).

Evaluation of Free Field Response Estimates.

Since the lumped mass model is used for modeling the soil deposit, the acceleration power spectral-density
function at the free field S, (@, o) will be given by

_ _— 2
S(@.0,)=|Hy(w,0,) -4-5,(@,0,) (14)
where H,,(w,0,) is the approximate transfer function, evaluated in accordance with expression (5 ).

Free field velocity response spectrum S, (T,h,0,), corresponding to S, (@, ,), is obtained by the following
approximate formula (Rosenblueth and Bustamante, 1962) :
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where :
T - period in the response spectrum (= 2 7/ w);
t,- input output time duration, assumed to be 10 seconds;
S,(@,0,) - acceleration power spectral-density function at the free field,
w - non dimensional parameter (= ¢ 2115
h - damping coefficient in the response spectrum.

The standard deviation of velocity and acceleration at the free field are evaluated by the following integrals:
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RESULTS OF ANALYSIS

The level of agreement between the results obtained by APM and 1DM is first investigated through a
comparative analysis. In Fig. 7.a,b,c are presented results of velocity response spectrum at the free field
S, (T,h=0,0.01,0.02;0.05,0.1;0.2), for three typical soil deposits. In general, a good agreement between
APM and 1DM results can be seen. Especially, in the long period range the agreement is very good.

150 T T T T 150 T T T T 1590 \ T T
WONLINRART OA = S0em/st NONLINRARY OA = $¥em/at WONLINRAR! O = $fem/st
(N1 - 1DM o 1 i — 1 o 100 —
E ...... APM ( MODB 122 ) E —-—- APM ( WODR 148 ) E —— APM ¢ MODE 142 )
O
S m Som S m
~~~ Lo ~
< = 0 =
.(\‘ 100 [ [
~; S N
N A
el 50 Y s RCII
P YL 7S RN P P Sy [} [

o
»{
-
-
@

7(s) T(s) T(s)

a. Hard soil deposit b. Medium soil deposit ¢. Soft soil deposit
Fig. 7. Velocity response spectrum at the free field for three typical soil deposits.

For above mentioned typical soil deposits, results obtained for velocity and acceleration standard deviation at
the free field indicate also that APM is in satisfactory agreement with 1DM, especially when at least the first
two modes of vibration are taken into consideration.

Results of a sensitivity study focusing on the effect of input motion intensity and "sofiness" or "hardness" of
soil deposits on the velocity response spectrum, velocity standard deviation and acceleration standard
deviation at the free field are shown in Figs. 8, 9 and 10 respectively. A soil deposit with H =20 m,
p,=175t/m’, p, =2.0t/m’, V; =400m/ s and h,, =0.02 is considered. Its average shear wave velocity ¥,

and input motion intensity level o, are held as variable parameters.
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Fig. 8. Velocity response spectrum at the free field.
In order to investigate the effect of "sofiness" or "hardness" of soil deposits on the velocity response spectrum,

the value of o, is kept fixed, while V, is held as variable parameter. Four levels are assumed for V, :
100m/s ; 150m/s; 200m/s and 300m/s. Results obtained from this analysis ( Fig. 8.a ) indicate that



decrease of V, is associated with the shift of spectral peak values toward long period range. From these results
it is also noticed that V, increase affects remarkably the peak values of velocity response spectrum. In case
when the effect of input motion intensity on velocity response spectrum at the free field is investigated, V, is
kept fixed while o, is held as variable parameter. Five level are assumed for o, : 20, 40, 60, 80 and
100cm / s*. Results of this analysis are shown in Fig. 8.b. Here again, it is noticed that peak location is shifted
toward long period range and its amplitude is almost proportionally increased with the increase of o, . The

later fact agrees also with the results obtained for velocity standard deviation at the free field, which are shown
in one of the following figures.

In case of velocity standard deviation at the free field ( Fig. 9 ), it is noticed that increasing softness of soil
deposit is associated with higher values of G, (o,) , which is an increasing linear function. Results obtained
for acceleration standard deviation ( Fig. 10 ) indicate that increasing softness of soil deposit is associated
with the decrease of 0, (5,) , which is also an increasing function but its increasing rate is sluggish.
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Fig. 9. Velocity standard deviation. Fig. 10. Acceleration standard deviation.

CONCLUSIONS

The following conclusions can be drawn from the results of analysis presented in this study:

- The proposed new formulation can be used for estimating input motion intensity dependent site-specific
response spectra for design purposes and improving site-dependent building-code provisions.

- The values of velocity response spectrum in the long period range increase with the increasing softness of
soil deposit.

- Softer the soil deposit higher the values of velocity standard deviation at the free field.

- Harder the soil deposit higher the values of acceleration standard deviation at the free field.
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