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ABSTRACT

Substructuring on-line test is recognized as alternative technique for full scale tests. The expected damage
portions of the structure are tested simultaneously with analytical modeling of the remaining part of the
structural system. Therefore, the elements are classified into analysis modeling elements and test specimen
elements. The degrees of freedom on the structure are split into mass associated and non-mass associated. The
displacements of the structural system are computed through incremental dynamic analysis. On the dynamic
modeling of middle or high rise buildings with concrete stiff slabs, the masses of the system are concentrated
at the floor levels and the displacements on the elements are considered as a function of the mass associated
lateral displacements. However, in the case of steel frames composed of flexible beam-columns and non-stiff
diaphragm, unbalance forces appear in the non-mass associated degree of freedom, and the representation of
deformations as function of the lateral displacements is not valid. In this research an on-line test on moment
resistant frame is conducted to verify the effectiveness of the artificial neural network predictor in the removal
of the unbalance moment which appears on the non-mass associated components. This scheme utilizes an
artificial neural network as predictor of the incremental forces on the specimen to achieve the displacements of
the system. A brief description of the applicability of the neural network computing in the problem is
presented together with the configuration of the network system and input parameters. The transformations
between the coordinate systems which are required in the execution of the algorithm, are briefly presented. A
T-type structure is choose as structural system, where box shaped sections 100x100x6 are the structural
members. The performance of the neural network predictor is compared with a full numerical analytical
simulation. The test is carried out considering constant normal force in the specimen under the excitation of El
Centro Earthquake.

KEYWORDS

Pseudo-dynamic Test; Neural Network; Substructure; Unbalance Moment; Moment Frame.

SUBSTRUCTURING ON-LINE HYBRID TEST

The on-line or pseudodynamic test (Takanashi ,1974) has been widely recognized as one of the most reliable
testing methods for earthquake excitation on full-scale structures. Unfortunately, the performance of full-
scale tests on high-rise or middle-rise buildings involves the use of large scale laboratories requiring
substantial investment. An alternative is the execution of subassembly tests, using parts of the structure with
full-size specimens, which in combination with adequate analytical models of the remaining parts of the
structure, can reproduce the behavior of the whole structural system,; this procedure is termed substructuring
on-line hybrid technique. Different applications have been developed, mainly in Japan (Takanashi et al.,
1980) and the United States (Mahin et al., 1985) with good results.



Unbalance Moment Removal Scheme

Flexible steel framed structures are widely represented by a discrete lumped mass system. The dynamic
system is solved by the following equation of motion in case of no viscous damping:

[MKX}+{F,} =-[MKI}Y, (1)
where [M ] : mass matrix of the structural system; [Fv] : force vector associated with mass excitation;
{I} : vector where all the elements are 1; Yg : earthquake ground acceleration.

Using the central difference method as integration scheme, the incremental solution for the equation of motion
on the mass associated displacements {X} is given by:

{AX)y™ = {AX)™ - AC{IMTHE ) + {1}, @

i—>i+l

In the case of flexible framed structures with non-rigid slab, unbalance forces denoted by AQ' appear on

the non-mass associated displacements {®}, due to material and geometric non-linearity. These unbalance
forces must be removed to avoid the contamination of the test results. To remove these unbalance forces the
principle of Kannan (et.al.,1973) is adopted. Then, because the stiffness matrix of the specimen is unknown,

its terms are separated from the incremental equilibrium equation . Therefore, to computed {©} the following
scheme is applied:

{A(_)i—>i+1} — _[K:w Il{{AQO—>i} +{Agis—>i+l}+[K:nd ]{AXi—>i+l}} 3)
where [K; ] and [K},] the stiffness matrix without contribution of the specimen and {AQ{™"*'} the

specimen resistance increment on non-mass associated DOF, the one shall be predicted. In this work a self-
organizing parameter model, which can represent by itself the incremental response of the specimen, is
proposed using an artificial neural network model.

ARTIFICIAL NEURAL NETWORK PREDICTOR

Artificial Neural Networks are systems with inputs (Xp) and outputs (Yj), integrated by a finite number of
processing units (Fig.1). These units operate in parallel and are arranged in layers similar to the patterns found
in the blologlcal neural nets. The processing elements or units are connected to each other by adjustable
weights (Wi, Wi, etc.). The artificial neural network needs the training or sampling presentation of the input
data in order to ieam from a set of desired outputs. If the weights change, the outputs of the network also
change, therefore, the selection of optimum set of weights which produce the desired output become the goal
in the solution. To achieve this goal, systematic process for adjusting the weights has been developed. This
process is termed "training" or '"learning" of the neural network.
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Fig.1 : Layered Artificial Neural Network

Processing Units

Every unit receive several output (Y Yj) from units on the previous layer which become inputs on the current
unit "j" and produce only one output (Yj). To process the inputs, the weighted sum of them is performed to
generate the general input (Xj). Here an addltlonal term named the bias or threshold (Tj) of the unit is used for



the computation of the total input. The unit then passes the total input through a nonlinear function (usually
Sigmoid or Hyperbolic type), which produces the output value of the unit. It must be mentioned that at the
beginning of the process the values of the weights and thresholds are assumed to be random values. Then the

threshold is assumed to be an additional output from a virtual unit with value Yo=1 and weight wo=Tj. Then
the value of Tj is adjusted by the same algorithm as the rest of the weights on the net.

A typical unit pass the general input through one of the above non-linearities to produce the output of the unit,
where the general input is defined by : X, = Z Yo, -T, 4
1
where X;j = General input in unit j ; Yj = Output from the unit i on the previous layer.
0jj = weight connector between unitiand j; Tj =Threshold of the unit j.

Then, the output of the unit is computed by the following function in the case of Sigmoid non-linearity :

|

Y, = Oxy =7 —x )

Topology of Neural Networks

According to Hrycej (1992), the computational power of the units taken alone is rather limited. If a system
made of such processing units has to solve complex tasks, its sophistication must consist of something
different from the processing units themselves, namely, their interactions. It is the topology of the nets that
determines which interactions can take place. The conectivity and the direction of the input/output and its
spread are crucial parts on the complex structure of the nets. The conectivity must consider the feed forward
interaction between units and a structural order must be defined. For the reader who is interested in network
topology and configuration the work of Lippman(1987) is an excellent reference.

Scaling or Normalization of Data

The input data and output data must be selected carefully, considering the existence of constraint into the non-
linear processing function (e.g.. sigmoid). A non-scaling on the data can generate saturation on the functions
or non-learning, giving unsuccessful results. The normalization of the data transforms each real value within
particular range, conditioned by the transfer function. The more likely used ranges are: from -1 to 1, from
-0.5 t0 0.5, from O to 1. In this way the saturation of the processing unit is avoided. Once saturation occurs,
the changes in the input value result in little or no change in the output. Because this, the intelligence is limit
and knowledge can not be captured on the network. Therefore, saturation should be avoided.

Training of Neural Networks

The training of the network is a sampling presentation of the input-output patterns to the network. In each
presentation, an input pattern is passed forward through each layer of the network. In each unit the output
from the previous layer units and interconnection weights are used to generate the general input; later the
general input is passed through the nonlinear processing function (e.g.. sigmoid) to produce the output of the
unit. This output is used for the units of the next layer to generate other outputs. In this way each input vector
is passed forward through the network, and an output vector is calculated. During the training, the network's
output is compared to desired data (training data), and an error term is created.

Modifying the interconnection weights, this error could increase or decrease. Due to this fact, several training
algorithms have been developed. The most popular training procedure for multi-layer feedfoward networks, is
the back-propagation algorithm (Rumelhart et al.,1986), that is used on this research.

Model For Unknown Restoring Forces

The question is: why to choose an artificial neural network as restoring force model ? mainly the answer can
be done with the properties of the neural nets :

- Neural networks can infer subtle, unknown relationships from data.

- Networks can generalize, it means, they can respond correctly to patterns that are only broadly similar to the
original training patterns.



- They are highly non-linear, and the interaction between the units and the amount of hidden layers make
possible to reproduce unknown non-linearities for non-training data.

A neural network simulator termed ZOT-BP has been implemented on a Sun Sparc-10 workstation coded in
FORTRAN. The simulator was installed in order to achieve the training process with the supervision of the
operator and to carry out the experimentation and improvement of the network's parameters.

The use of a neural network as predictor for the incremental vector {AQ‘;’“'} , needs a set of real test data in
order to execute a successful training. Using calibration responses as training data, a guarantee of a real non-
linearity for the prediction is expected. For a set of 300 sets of data, which represent 3 sec. of excitation with
varying moment capacity in both ends (AMap and AMpA) and constant axial capacity (AN), ZOT performs
the training of the network. An input layer of 21 units, a hidden layer with 42 units and an output layer with 3
units (AMARB, AMBA, AN) are adopted in this problem. For this case the learning rate (1) value for the
modification of the gradient was equal to 0.000065 at the beginning of the process.

After 60000 sweeps of presentation of the data, the neural network reproduced the training data with enough
accuracy. Fig.2 shows the output value of the neural network after the training process. A good agreement
between the training data and the testing output of the neural network is found.
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Fig.2 : Training data and Output data after the Learning of the AMBA component.

Interaction between the Analysis and the Test

In the execution of an hybrid simulation, three coordinate systems must be used, to perform the analysis,
reproduce the desired displacement configuration of the beam-column specimen and drive the actuator system
to reach the target position where the restoring forces involved in the simulation shall be measured. A brief
description of the used coordinate systems is presented as follow:

- Analysis Coordinate system : this system is defined by the nodal displacements (AXsAY 5,A¥ ) and nodal
forces (Fxa,Fya,Ma), which are involved in the numerical solution of the system (Fig. 3).

Fig.3 : Analysis and Condensed Coordinates



- Condensed Coordinate system : become a system available to reproduce large deformations(Fig. 3), where
the components of the system are expressed in function of the rotation angles between the tangent to the
deformed element in the node and the cord between the ends points of the element, and the normal

deformation in the member (AB4,AB0p,A8). These displacements are related with the corresponding

condensed forces (AM,AMpg,AN). Using this system, a generalized representation of a beam-column
element deformed is achieved. The relations between the analysis coordinate system and the condensed
coordinate system is given by the transformation matrix [C] ; the relation between the forces on the analysis
coordinate and the measuring forces expressed in condensed form is given by :

{AF} =[CKAG} , that s,

(AFx,) [ 0 0 -1
AF ~1/H -I/H 0
Ya AM,

AM, 1 o o 6
J 3

apx, [T 001l (
AFy,| |VH 1H o0

am, | | 0 1 0

Using the transposed matrix [C]T it is possible to express the condensed displacements in terms of the
compute analysis displacements, in order to drive the specimen to the deformed desired position:

{A®} - [C]"{AX} thatis,

(AX,)

AY,
48,] [0 -1/H 1 0 U/H 0],
A0, ¢=[0 -1/H 0 0 1I/H 1<AXI;> )
AS -1 0 01 0 0 AY,

AY, |

- Test Coordinate System : Using the above transformation the required condensed coordinate position is
known, but its configuration depends only of the actuator coordinates or test coordinates, the ones must reach
the condensed position by use of the transformation matrix [T] . This relates the condensed coordinate with
the test coordinate system and the following equation gives the incremental value for the displacement control
to drive the actuators (Fig. 5) :

~(L,Ly) .
AXex, (Ly +L3) A6,
{AXe} =[THA®} {AXex,!= % 0 A @®)
2+Ls
AXex; 0 0 (Ls+Le) Ad
| (Ls+Lg+Ly) |

The measuring of the restoring forces is executed using the load cells built-up on the actuators, and

condensed components are found through the transposed matrix [T]T.This result is inserted in analysis
coordinates on the restoring force vector to continue the analysis of the hybrid system.

{G}=[1T {FF}



M, 0 -L, 0 FF,
(Ly+L3) (Lp+Lj3)
N 0 0 (Ls+Lg+L,) [FF3
i (Ls+Lg)
THE PROTOTYPE TEST

The structural model is shown in Fig.4. Steel box-shaped sections, 100x100x6 are used as structural
members . Here, the beams are considered analytically and the central column is tested. The system was

subjected to the NS-component recorded at El Centro with duration of 8 seconds and peak acceleration of 250
gals.
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Fig.4 : Structural Model

For this test the mass was considered equal to 0.0311296 ton.sec?/cm, under constant axial load of 33 ton.

(around 40% of the axial capacity), using the test setup configuration shown in Fig. 5. Details of the general
beam-column test apparatus used in the test are given by Zavala et. al 1994.

1
WhereL1 =80 cm . L2= 1308cm . L3=2046an .
I4=4lan. LS= 175an. L6= 605an . L7= 79 an L8=50am .

Fig.5 : Test Apparatus

The unbalance moment around node B is presented in Fig.6 with negligible value. The performance of the

neural network predictor is presented in Fig.7 for the AMBA component; Here the self-organization of the
model is proved with the good agreement of the prediction and the measure signal.
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Fig.6 : Unbalance Moment on node B
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Fig.7 : Neural Network Performance during the Test

To accept the true hybrid response obtained by the simulation, a full numerical analysis using a Multi-Spring

model (Ohi et al.,1986) is compared with the test results. Shear resistance vs. drift for test and analysis results
are shown in Fig. 8 with very good agreement.
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Fig.8 : Drift vs. Shear relations



CONCLUSIONS

- The neural network predictor is applied successfully in the removal scheme of the unbalance moment,
which is reduced to a negligible level.

- The improvement of the prediction depends on the training of the artificial neural network. Selection of the
proper topology, transfer function, and training data, provide a powerful tool for the simulation of earthquake
excitation on flexible beam-column members.

- A well known multi-spring joint model is compared with the presented neural network predictor. From the
results, the confidence on the technique is assured.
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