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ABSTRACT

This paper describes digital simulation methods of strong earthquake ground motions using a seismolog-
ical model. The methods described in this paper are based on the spectral representation of stochastic
wave in conjunction with the seismological stochastic source model with w=? property and the represen-
tation theorem of elastodynamics. Numerical examples demonstrate an applicability of the proposed
methods into prediction of strong earthquake ground motions in areas where strong-motion data are
sparse.
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INTRODUCTION

Over the past four decades, primarily two approaches have been adopted in evaluation of the strong
earthquake ground motions for aseismic design of the engineered structures. One is to use the recorded
strong motions. In some cases the recorded motions are modified to better represent local soil con-
ditions. The second is to generate strong ground motions by combining an appropriate seismological
model with information about the seismicity and geology of the site. Whereas the first method is
applicable in regions where strong-motion data are rich, it is not as easily applicable in areas where
strong-motion data are sparse. In this paper, the ground motion of a small earthquake is produced by
a stochastic point source model with w™? property, while the motion of a large earthquake is gencrated
by an extended source with finite dimensions.

GROUND MOTION USING A STOCHASTIC POINT SOURCE MODEL

Based on the spectral representation of stochastic wave, the non-stationary stochastic acceleration mo-
tion a(t) with the evolutionary power spectrum S,,(2,w) can be simulated in the following fashion
(Shinozuka et al., 1987):
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An upper bound of the frequency w, in Eq.(1) represents an upper cut-off frequency beyond which
Saa(t,w;) may be assumed to be zero for either mathematical or physical reasons. In Eq.(1), ¢; are



independent random phase angles uniformly distributed over the range (0,27). Note that the simulated
motion is asymptotically Gaussian as N, becomes large due to the central limit theorem. The evolu-
tionary power spectrum of the earthquake ground acceleration motion using a stochastic source model
takes the following form:

Son(tiw) = ;;—F)W(t.,w)|2|A(w)|2; A(w)] = C As(w) Ap(w) Aa(w) (2)

where |W (t,w)| is the modulating function which defines the evolutionary power spectrum from the
stationary power spectrum. |A{w)]| is the acceleration spectrum (Fourier amplitude spectrum) of the
shear waves at a distance R from a fault with seismic moment M, which is given by Hanks and McGuire
(1981). In Eq.(2), C., As(w), Ap(w), and As(w). represent a scaling factor, a source spectrum, a
diminution factor, and a local soil amplification factor, respectively. The scaling factor and the source
spectrum are given by:
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where R(0, ) is the average correction factor for radiation pattern, F' accounts for free-surface ampli-
fication, V accounts for the partitioning of the energy in two horizontal components, p is the density of
the material at the source, Cs is the shear wave velocity at the source, and w,. is the corner frequency.
The diminution factor and the local soil amplification factor are given by:
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The first factor in Ap(w) is the high-cut filter that accounts for the sudden drop that the spectrum
exhibits above w,,,,.. It is assumed here n = 1. The second factor is the geometric spreading factor of
the shear wave. The third factor is the effect of the material damping on wave propagation in which
@ is a frequency-dependent atlcnuation factor. In this paper the local soil amplification factor A,(w)
is based on the Kanai-Tajimi spectrum (Kanai, 1957; and Tajimi,1960). w, and h, control the peak
position and the peak value of the amplification factor; «, = 15.6(rad/sec), h, = 0.6 for a firm soil.
The modulating function |W (¢, w)| in Eq(2) is assuimed here to be in the following form:
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where
cr = [(apd — apa) M + agy — apad] X a5 a1 = az = 6.0; @12 = a3y = 1600.0; (5b)
dy3 = 14000.0; @14 = @34 = 54.0; a15 = ass = 107%; 4y = ayq = 4.0; agy = ayy = 1000.0; (5e)
dz3 = 9500.0; agq = a4q = 36.0; azs = ays = 107 azz = 15000.0; aq3 = 9510.0 (5d)

The form of the modulating function in Eq.(5) is determined in such a way that the equation approxi-
mates the evolutionary spectrum model developed by Kimura and Kameda (1987).

It should be noted here that in the low frequency range the acceleration spectrum |[A(w)| and the
corresponding velocity and displacement spectra, |V (w)| and |U/(w)], are proportional to w?w, and a
constant, respectively. The Kanai-Tajimi spectrum of ground acceleration motion is constructed by mul-
tiplying A4(w) in Eq.(4) into a constant spectrum which represents the spectrum of acceleration motion
at the base rock of the surface soil layer. Therefore, the singularities are present in the Kanai-Tajimi
spectrum at w = 0, which cause the stationary variances of ground velocity and ground displacement to
be unbounded. To remove these undesirable singularities, a filter is introduced by Clough and Penzien
(1975). However, the physical meaning of the parameters in the filter of Clough and Penzien is still
uncertain. The spectrum presented in Eq.(2) overcomes the undesirable singularities of the original
Kanai-Tajimi spectrum without suffering from the physical meanings of the model parameters.

GROUND MOTION FROM AN EXTENDED FAULT



Stmulation Method

This simulation method belongs to the empirical Green’s function method initially suggested by Hartzell
(1978). This method, which has been discussed in detail by Irikura (1983), is a method to simulate
ground motions from an extended fault on the basis of the representation theorem of elastodynamics.
In this paper, a brief discussion of the relevant mathematical formulation is presented in the frequency
domain, and a new transfer function is presented, which accounts for the difference between the slip
time function of the extended fault and that of the small fault. The extended fault surface with length
L and width W is divided into small faults with length AL and width AW, as shown in Fig.1. Us-
ing the representation theorem of elastodynamics, the far-field displacement w(,t) in a homogeneous,
isotropic, and layered medium can be expressed in the following integral form (Aki and Richards, 1980;
Somerville,et al., 1991; Saikia, 1993):
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where & = (x,y,2)? is the observation point, D(f n,t) is the velocity of the source time function

at position (£,n) on the fault, G(x,&,n,t — t¢,;) is the Green’s function (the impulse response of the
medium), and * represents a convolution. 7,, is the rupture propagation time from the hypocenter of
the extended fault to the (m, n)* small fault, and ¢ ., is the propagation time for shear waves to travel
from the (m,n)" small fault to the observation point, which are defined by:
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where (.., is the distance from the hypocenter of the extended fault to the (m,n)® small fault, R,,,.
is the distance from the (m,n)™* fault to the observation point, R is the hypocentral distance of the
extended fault, Vi is the rupture velocity of the fault, and Cgs the S wave velocity of the medium.
The Fourier transform of Eq.(6) yields the following equation:
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In order to take into account the difference between the slip time function of the large fault and that
of the small fault, the transfer function is introduced, which is defined as:
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where Dmn(fm, N, w) 1s the Fourier transform of the velocity of the slip time function at position (&, 7,)
of the small fault. Using Eq.(9), Eq.(8) can be written as:
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In Eq.(10b), %, (%, w) is the far-field displacement due to the small fault. Equation (10) indicates that
the simulated motion of the large fault is the summation of contributions with weight 7,,,,(w) from the
N x Nw small faults.

Based on Eq.(10), an approximate simulation method can be obtained, using a single observation record
uo(x,w) due to the (mg, no)™ fault among small faults. By assuming that the slip time function of each
small fault and the Green’s function from the position of each small fault to the observation point arc
approximately equal to those of the (g, n())th fault. then Eq.(10a) can be reduced as:
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In deriving Eq.(11) the effect of the hypocentral distance on the Green’s function has been considered
approximately because the shear wave attenuates inversely proportional to the hypocentral distance
in a homogeneous isotropic medium. From the similarity conditions of earthquakes (Kanamori et al.,
1975), the following relations are derived:

Moy L W D 7
my. AL AW Dy 1o
where My is the seismic moment of the large fault: mgy the seismic moment of the small fault; D and

7 are the final offset of the dislocation and the dislocation rise time of the large fault, respectively; Dy
and 7 those of the small faull.
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The transfer function T, ,(w) defined by Eq.(9) can be obtained by specifying a slip time function. The

following transfer function is used in this paper:
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where & is a parameter that controls the value of the transfer function in high frequency range. Although
several physical models exist (Aki and Richards, 1980), the generation process of high frequency seismic
waves due to fault rupture may be quite complex. Therefore, without the use of physical models, one
parameter & has been introduced here, which has to be empirically estimated. For & = 1, the transfer
function is equivalent to that obtained by assuming the exponential function for slip time function of
the large fault and the small fault (Harada ef «l. 1995). It is noted here that the several transfer
functions examined in this paper (see numerical examples) are obtained by assuming the ramp function
for slip time function (Harada et al., 1995) and the Irikura model (1983). It is also noted here that
the frequency variations of the different transfer functions examined in this paper are similar in the low
frequency range; and, in the high frequency range, the transfer function obtained from the assumption
of the ramp function for slip time function takes value lower than the other transfer functions,

Average Characteristics of the Source Spectrum of an Fatended Fault

To show the average characteristics of the source spectrum of an extended fault, we assume that the
rupture start times of each small fault are distributed randomly with uniform probability over the
rupture duration 7 of an extended fault. By considering the practical situation, the small faults are
assumed identical so that a single observation record fromi a specific small fault can be used. For the
attention of the source characteristics, we neglect the correction of the hypocentral distances. With
these assumptions the Fourier spectrum of the uni- component waveform us(w) from an extended fault

may be written such as:
N N
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where uso(w) represents the Fourier spectrum of the uni-component waveform from the small fault, and
tr . the time delay uniformly distributed over the rupture duration 7. By taking the expectation over
the ensemble, the average source spectrum |us(w)| is obtained as:

us(w)| = SUMy1w)|T(w)|uso(w)] (15)

where |T(w)|=|Tn(w)| is the transfer function given by Eq.(13), and SUMy(w) the coefficient of
random summation given such as:

SUMy(W)= |[N2|14+(N2=1) | —% (16)

In Eq.(16), wy is the first corner frequency determined from the rupture duration of an extended fault
such as: N

wr =7 (an)



By introducing the second and third corner frequencies defined by,

o =2, wo = = (18)
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the transfer function of Eq.(13) can be rewritten as:
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The source spectrum of the small fault is assumed to be w™? model such as:

juofeo) | = - o 21

In the two extreme frequencies where w — 0 and w — o0, the source spectrum of an extended fault is
found from Eq.(15) to be given by:
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Figures 2 and 3 show the source spectra of extended fault normalized by the scismic moment M, for
the cases of k=1 and 5, respectively. In each figure, wy/w, =1/10 is assumed and the variations with
the summation parameter N are shown. For comparison, the w™? source model with the second corner
frequency w, is shown by the heavy line in each figure. It is found from Fig.2 (for the case of x =1)
that the source spectrum of extended fault follows the w™? model at the lower frequency (w;) and the
higher frequency (w.) limits, but at intermediate frequency range its spectral amplitude is lower as
the summation parameter N increases than that expected from the w™? model. These characteristics
observed from Fig.2 are also observed from Fig.3 (for the case of £=5), but the source spectral amplitude
is amplified by a factor of & at higher frequency range (w > wy).

By comparing these characteristics shown in Figs. 2 and 3 with those obtained from the various irregular
source models (for examples, Sato et al., 1973, Hanks et al., 1981, Papageorgious et al., 1983, lzutani,
1984) where the heterogeneily of either slip or stress drop on the extended fault plane is taken into
account, the parameter x may be found to be equivalent to the ratio of local stress drop to global stress
drop or the ratio of dynamic stress drop to static siress drop.

NUMERICAL EXAMPLES

Numerical examples (Harada, ¢t al., 1995a) are given now in order to demonstrate an applicability
of the simulation method using a stochastic point source model and the simulation method of strong
motion derived from an extended fault into an artificial gencration of strong motious for aseismic design.
The examples are also given to visnalize the effect of the transfer {unctions on the simulated ground
acceleration motions.

The geometrical relations of the large earthquake (extended fault), the small earthquake, and the
observation point used in the numerical examples are shown in Iig.4 . The source parameters of the
large earthquake and the small earthquake are indicated in Tables 1 and 2. Figure 5 shows a sample
acceleration motion of the small earthquake with magnitude 5, £,=20 km, and A=17.32 km generated
using Eq.(1) with time interval Af = 0.01 sec, and w, = 27 x 50 rad/sec, N,=1024. In this simulation,
the following values are used:

R(6,p) =0.63; F=2.0; V=05; p=2Tgr/em®; Cs = 3.6km/sec; w. = 7.07Trad/sec (23a)



Wmnar = 66.4rad/sec; @ = 1()(‘71 log(w/2m) + q-z); q1 = 0.64; ¢ =2.1; w, = H.56rad/sec; hy; = 0.6

(230)
Figure 6 shows the acceleration motions from the large earthquake simulated by Eq.(11) using the
simulated motion of the small earthquake in Fig.5. In this simulation N = 8 is decided from Eq.(12)
and Tables 1 and 2. It is seen from Fig.6 that the acceleration motions simulated by the method using
transfer functions of the Brune model (by assuming the exponential function for slip time function), the
Irikura model (Irikura, 1988), and the proposed model (x = 1) are similar, while the motion simulated
by the method using transfer function of the Haskell model (by assuming the ramp function for slip time
function) has lower amplitude. In the proposed model, the peak acceleration is found to be controlled
by the parameter x.

CONCLUSIONS

This paper describes digital simulation methods of strong earthquake ground motions using a seismo-
logical model. It can be concluded that:

1} A simulation method of ground motion using a stochastic point source model has been described.
2) The Kanai-Tajimi spectrum is improved by taking into account the seismological source model.

3) A simulation method of strong ground motion from an extended fault has been described. The
method is based on the representation theorem of elastodynamics in the frequency domain. In this
method, the simulated motion derived from a stochastic point source model is used as the small earth-
quake ground motion rather than the recorded motion as is usually done in the empirical Green’s
function method

4} A new transfer function which takes into account the difference between the slip time function of the
large earthquake and that of the small earthquake is presented.

5) The new parameter # introduced into the new transfer function is found to be equivalent to the ratio
of local stress drop to global stress drop or the ratio of dynamic stress drop to static stress drop in the
available irregular source models where the heterogeneity of either slip or stress drop on the extended
fault plane is taken into account.

In the paper (Harada et al., 1995b), the proposed simulation methods are examined by comparing with
the observed records at Miyazaki city during the Hvuganada carthquake (M ;p14=6.6, 3/18, 1987) and
its aftershock (Mya4=5.0). From this examination, it is found that the proposed method can predict
the observed records if we could predict the appropriate parameters in the model. In this specific earth-
quake case, the parameter & is found to be 1.3-3.0.
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Table 1 The source parameters of a large fault
used in the numerical examples

Observatzon Parameters Name Velue Unit

Strike N60.6"E
Slip Type Strike Slip

R RO Dip Angle 90 degree
Length 20 km

Z / /ﬁ J /\ Width 10 km
NNw ke /2 Depth of

// / \ AW top of fault 0 km
Mn W  Seismic Moment  2.04 x 10* dyne-cm

™ Con V 7 Magnitude 7
/ ﬁ] Rise Time 1.6 sec
m ‘ 7 / Rupture Velocity 2.5 km/sec

& 62 gm £ N, S Wave Velocity 3.6 km/sec
B Table 2 The source parameters of a small fault
L used in the numerical examples

Figure 1 Schematic di fthe G , . Paramelers Name Value Unit

gu agram ol the Green’s function “Seismic Moment 447 x 10®  dyne-cm
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Figure 4 A large fault, a small fault, and the observation point used in the numerical examples
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Figure 5 A simulated sample ground acceleration from a small earthquake
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Figure 6 A simulated sample ground accelerations from a large earthquake for the different models



