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ABSTRACT

This paper describes the dynamic characteristics of stress ribbon bridge obtained from experiments and
theorctical analyscs. Generally, the stress ribbon bridge has a low natural frequency, because the stress
ribbon is thin in comparison with its span length and has a low rigidity. For this rcason, it is nccessary
to make clear the dynamic characteristics. In most stress ribbon bridges constructed recently in Japan.
the stress ribbon is joined rigidly to the abutments. However, the supports are to be free from the end
rotation of stress ribbon on old type bridges. The dynamic tests of the stress ribbon bridge named
Usagibashi have been carried out by human forces. And the eigenvalue analysis by using FEM has been
made to make clear the influences of different bearing conditions. It was obtained that the vibration
mode of first natural frequency is point symmetric vertical vibration in case that the span to sag ratio is
less than 60 and the bearing condition of the stress ribbon has effect on the dynamic characteristics.
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INTRODUCTION

The stress ribbon foot bridges with more than 100m span length have been constructed recently because
of the elegant scenery, high economy and ease of the construction (Strasky,1987, Noritake et al.,1992).
About 20cm in thickness of the stress ribbon is very thinner in comparison with the span length (Arai
and Nishiki, 1992). So, these flexible bridges excel in elongation rigidity than in flexural rigidity. As
the relation between actual load and displacement is not linear in this structural type, it is necessary to
use the design theory which can deal with the geometric nonlinearity. The design method based on the
deflection theory has been used until now. In case of the application of this design method, the stress
ribbon is idealized to the cable structure with or without flexural rigidity. Rotational deformation of the
stress ribbon due to the change of air temperature and action of live load varies remarkably at the
neighborhood of the abutments. So, formerly, the curved surface bearing had been formed on the
abutments in order to make it possible to move the support position of the stress ribbon according to the
change of deflection. This bearing type will hereinafter be abbreviated to “pin connection”.

The deflection theory shows an outstanding applicability to this structural type. But recently rigidly
connected stress ribbon with the abutments has been constructed, because the adoption of rigid
connection makes it possible to omit the above mentioned bearing system of the stress ribbon and
cxpansion joints, and moreover, is desirable for the maintenance. In this structural type, the mechanical



characteristics near the connected region of the stress ribbon with the abutments can't be analyzed
exactly by the deflection theory. So, we have examined the influence of the difference of bearing
condition of the stress ribbon on the static characteristics (Nakazawa gt al., 1994). In this examination
in which the main analytical factor is the span to sag ratio, we have used the large deformation theory.
As a result, it becomes clear that there was no significant difference of the horizontal reaction and of
the deflection between pin connection and rigid connection, and that the rigid connection had no
mechanical superiority over the pin connection because of the appearance of large bending moment at
the connective regions, and that it was necessary to examine the effective span length to apply the
deflection theory to the stress ribbon bridge with the rigid connection. But, it has not made clear the
influence of bearing condition on the dynamic characteristics of stress ribbon bridges. This paper
describes the dynamic characteristics obtained by experiments and theoretical analyses. The eigenvalue
analysis by using finite element method has been made to clarify the influences of different bearing

conditions.

ANALYTICAL MODEL

The prestressed concrete stress ribbon bridge named "Usagibashi" was used for analysis and experiment
(Shibata et al..1993). This foot bridge shown in Fig.1 was constructed in August 1992. The location of
this bridge is Kitakata Town, Miyazaki Prefecture, Japan. The span length is 115m, and the sag is 3.5m
(span to sag ratio is about 33). The stress ribbon is rigidly connected with the abutments. The reverse
wing section was adopted for the shape of the cross section of the stress ribbon to prevent the blowing
up of the stress ribbon by side wind. Though the standard width of the stress ribbon is 2.0m. the width
is widencd to 5.0m gradually ncar both abutments over the 15m interval. Morcover, the stress ribbon in
these intervals is thickened from 17c¢m to 120cm. These treatments were done to improve the stability to

wind action.

Geometrical nonlinearity. in which the horizontal tensile force of cable due to the action of dead load
was included. was introduced into the stiffness matrix. The horizontal tensile force of cable was
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Fig. 1. General view of Usagibashi

Table.l Coordinates of nodes

node x(m) y(m) node  x(m) y(m) node x(m) y(m) node  x(m) y(m)

1 -28.000 -0.866 14 2.000 -0.040 27 34.500 ~-1.296 40  67.000 -4.789
2 -27.000 -0.808 15 4.500 -0.057 28 37.000 -1.485 41  69.500 -5.150
3 -25.500 -0.724 16 7.000 -0.088 29  39.500 -1.688 42 72.000 -5.525
4 -23.000 -0.596 17 9.500 -0.131 30 42.000 -1.904 43 T74.500 -5.913
5 -20.500 -0.481 18 12.000 -0.188 31 44.500 -2.133 44 77.000 -6.314
6 -18.000 -0.379 19 14.500 -0.259 32 47.000 -2.375 45 79.500 -6.728
7 -15.500 -0.290 20 17.000 -0.342 33 49.500 -2.630 46  82.000 -7.155
8§ -13.000 -0.215 21 19.500 -0.439 34  52.000 -2.899 47 84.500 -7.596
9 -10.500 ~-0.154 22 22.000 -0.548 35  54.500 -3.181 43  86.000 -7.865
10 -8.000 -0.104 23 24.500 -0.671 36 57.000 -3.476 49  87.000 -8.050
11 -5.500 -0.068 24 27.000 -0.808 37 59.500 -3.784

12 -3.000 -0.045 25 29.500 -0.957 38 62.000 -4.106

13 -0.500 -0.038 26 32.000 -1.120 39 64.500 -4.441




obtained from the static analysis by the large deformation theory and the distributed mass was adopted
for the mass matrix (Maeda et al., 1974). In case of modeling, the stress ribbon was divided into 48
elements along the span length. Variable cross sectional region with 15m in length was divided into 7
elements, and standard cross sectional region with 85m in length was divided into 34 equal length
partitions. The coordinates of these nodes are shown in Table 1. Table 2 shows the cross sectional area.
moment of inertia of area and torsional constant of these elements. Modulus of elasticity, Poisson's
ratio and unit weight of concrete are assumed as 3.15X 10°kgf/cm?, 1/6 and 2.5tf/m’, respectively.

Table 2. Analytical parameters of Usagibashi

Cross-sectional area Moment of inertia of area Torsional constant
Element No.

A(m?) [.(m*) I,(m") J(m")
1 and 48 4.620 0. 3654 9.186 0. 3521
2 and 47 2.776 0.1131 5.024 0.1082
3 and 46 1. 176 0.01123 1. 790 0.01030
4 and 45 0.601 0.001402 0.6579 0.001140
5 and 44 0.520 0.001218 0.4288 0. 0009883
6 and 43 0.438 0.001026 0. 2596 0.0008363
7 and 42 0. 354 0. 0008240 0. 1418 0. 0006842
h 0 0 0. 09465 0

to 41 L3102 . 0007210

. 0006082

DYNAMIC CHARACTERISTICS OF USAGIBASHI

The bridges with two types of bearing condition of stress ribbon, namely, pin connection and rigid
connection with the abutments, were analyzed theoretically to investigate the dynamic characteristics.
The vibration modes and the natural frequéncies obtained from the theoretical analysis are shown in
Fig.2 and Table 3. respectively.

According to the considerations based on the analytical results, the following are pointed out as the

dynamic characteristics of Uasagibashi.

1) Many vibration modes have low natural frequency which may raise problems such as serviceability
to passengers and stability for wind action.

2) In the two cases of pin connection and the rigid connection of stress ribbon with the abutments. the
first point symmetric vertical mode has the lowest natural frequency. This result differs from the
basic vibration mode of string and beam (axis symmetric). This may be caused by relatively smaller
span to sag ratio.

3) Pin connection makes the natural frequency lower than the rigid connection. Second vibration mode
coupled transversc to torsion appears in case of rigid connection, but third mode in case of pin
conncction. The difference may be caused by the difference of rigidity of stress ribbon at the end
regions.
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Fig. 2. Analytical vibration modes of Usagibashi



Table 3. Natural frequencies and vibration modes of Usagibashi

Mode Rigid connection Pin connection

in Fig.3 Classification of Vibration mode  f(Hz) Classification of Vibration mode f(lz)
Ist Ist point symm. of vertical vib. 0.550 Ist point symm. of vertical vib. 0. 454
2nd 1st axis symm. of coupled vib. 0.742 lst axis symm. of vertical vib. 0. 648
3rd Ist axis symm. of vertical vib. 0.766 Ist axis symm. of coupled vib. 0. 742
4th 2nd point symm. of vertical vib. 1. 145 2nd point symm. of vertical vib. 0.909
5th ond axis symm. of vertical vib. 1. 155 2nd axis symm. of vertical vib. 1. 137
6th 9nd axis symm. of coupled vib. 1. 495 3rd axis symm. of vertical vib. 1.223
Tth 3rd axis symm. of vertical vib. 1.510 3rd point symm. of vertical vib. 1. 452
8th Ist point symm. of coupled vib. 1. 809 2nd axis symm. of coupled vib. 1. 495
9Lh 3rd poinl symm. of vertical vib. 1.823 4th axis symm. of verlical vib. [. 775
10th 4th axis symm. of vertical vib. 2.211 Ist point symm. of coupled vib. 1. 809

Although it was confirmed that 3-dimensional beam model made it possible to analyze the dynamic
characteristics of the stress ribbon bridge, it is pointed out that this model can't treat the variable
paramcters such as mass, rigidity. sag and the number of cable. The estimation mcthod of thc natural
frequency which can dcal with the above paramecters, has been rccently proposcd by some rescarchers
(Hcjima ct al..1989) They developed the equation by solving the eigenproblem of the equation of motion
obtained from Lagrange's equation which was composed of strain energy of cable calculated by the
dcflection theory. strain energy of concrete stress ribbon based on the beam theory, and the kincmatic
energy obtained by regarding the motion of stress ribbon as a rigid body. They further assumed the
vibration mode by considering the bearing condition of the stress ribbon with the abutments as nearly

rigid.

Table 4 shows the natural frequencies obtained from this method, experiments and the finite element
method by using 3-dimensional beam element. The data used in the analysis is as follows:
The number and the cross sectional area of cable for construction work : 6 and 0.001387m?
The number and the cross sectional area of cable for tension : 6 and 0.003 129m?
Modulus of elasticity of cable 2.0X10°kgf/cm’
Cross sectional arca of stress ribbon at standard region : 0.3118m?
Span length and sag : 115m and 3.5m,
Horizontal tensile force of the cable due to the dead load : 451tf
Weight of the stress ribbon per unit length : 0.78tf/m
Moment of inertia of area : 1,=0.09465m*, 1,=0.000721m"*
Torsional constant : J=0.000608m"

It was confirmed that the natural frequency was obtained approximately from the estimation method. But,

Table 4. Natural frequencies (Hz) by experiment,
by FEM and by estimation(Hejima et al., 1989)

Vibration mode Experiment Analysis Estimation
Ist axis symm. 0.732 0. 766 0.702
2nd axis symm. 1. 172 1. 155 1.288
Vertical vib.
Ist point symm 0.586 0.550 0.416
2nd point symm 1.123 1. 145 1. 145
Ist axis symm. 0. 781 0.742 0.757

Coupled VIb- o4 axis symm. 2. 344 1.495 1484




the estimation method cannot consider the difference of bearing condition of stress ribbon with
abutments and the influence of the variation of the cross section. Low estimation of rigidity at both
ends of the stress ribbon connected with the abutments leads to slightly lower natural frequency in
comparison with the results by the experiments and the finite element method.

PARAMETRIC ANALYSIS

The following four structural models were considered to clarify the influence of the difference of
conccting condition and of the variation of cross-sectional shape on the dynamic characteristics.
Model A: Thickness and width of the stress ribbon vary at the neighbourhood of the abutments.
Connecting condition of the stress ribbon with the abutments is rigid.
Modecl B: Thickness and width of the stress ribbon vary like Model A.
Connecting condition of the stress ribbon is pin.
Model C: Thickness and width of the stress ribbon is uniform along the span length.
Connecting condition of stress ribbon is rigid.
Modcl D: Cross scction of the stress ribbon is same as Model C.
Connccting condition same as Model B.
The span to sag ratio is considered as the parameter in the analysis. The coordinates, the horizontal
tensile force and sag are the values after the stress ribbon subjected to the dead load deformed.

In the case where the cross sectional shape of the stress ribbon is uniform along the span length and the
conncction of the stress ribbon with the-abutments is pin, it is possible to apply the deflection theory to
the analysis. The horizontal tensile force of cable H is denoted as H = qL?/8f in which q is thc intensity
of load. L is the span lcngth and [ is sag. Substituting the values of the span Iength, and the intensity of
dead load into this equation, the horizontal tensile force of cable varies from 112tf to 1346uf when the
span (o sag ratio changes from 10 to 120.

We analyzed the dynamic characteristics by using these data and 3-dimensional beam element model.
Fig 3 shows the relation between the natural frequencies from first to third vibration modes and the span
to sag ratio. It can be seen from this figure that the vibration mode with the lowest natural frequency
changes from point symmetric mode to axis symmetric mode according to the increase of the horizontal
tensile force of cable due to the increase of the span to sag ratio. In the case where the vibration mode
is axis symmetric, the natural frequency takes a maximum value when the span to sag ratio is about 40.
When the span to sag ratio is about 60, the natural frequencies of all the vibration modes approximately
agree. But in the case where the span to sag ratio is over 60, the difference in the natural frequency
between the point symmetric mode and axis symmetric mode becomes larger according to the increase of
the span to sag ratio. This is caused by the increase of rigidity as the horizontal tensile force becomes
larger.
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The deflection theory gives linear relation between the horizontal tensile force of cable and the span to
sag ratio. But. this relation becomes nonlinear when the cross sectional size of the stress ribbon varies
along the span length or the stress ribbon is rigidly connected with the abutments. Influences of the
bearing condition and the variation of cross sectional size along the span length on the relation betwecen
the horizontal tensile force due to the dead load and the span to sag ratio were analyzed by the large
deformation theory. The results obtained are shown in Fig.4. In this analysis, the maximum span to sag
ratio possible to analyze was limited to about 60 by the deflection due to the dead load. From this figure,
it can be scen that nonlinear relation appears when the span to sag ratio becomes larger than 40.

Considering the influence of the bearing condition of the stress ribbon, it becomes clear that the pin
connection makes the horizontal tensile force larger than the rigid connection when the span to sag ratio
is the same. The horizontal tensile force becomes largest in the case that the cross sectional size varies
along the span length and that the bearing condition of the stress ribbon is pin connection (Model B).
This may be caused by following. namely. the rigidity in this case is smaller than that in the case wherc
the bearing condition is rigid connection, and the intensity of dead load is larger than that in the casc
where the cross sectional size is uniform along the span length. Geometric rigidity obtained from the
horizontal tensile force was introduced into the stiffness matrix. The relations between the natural
frequency and the span to sag ratio obtained in this way are shown in Fig.5.

From these results, it becomes clear that (1) when the span to sag ratio is smaller than 60, the vibration
mode having the lowest natural frequency is point symmetric vertical mode in all cases. (2) the natural
frequencics of the point symmctric vertical modc and the vibration mode coupled transversc to torsion
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become high with the increase of the span to sag ratio, (3)the natural frequency of the vibration mode
coupled transverse to torsion becomes high according to the increase of the rigidity, and the vibration
shifts from second mode to third one, (4) there exists a peak value of natural frequency in the axis
symmetric vertical vibration mode, and the span to sag ratio when the natural frequency reaches a peak
value, decreases according to the increase of the rigidity. But, if the span to sag ratio exists in the
range up to 20, second axis symmetric vertical vibration mode appears first. When the span to sag ratio
is over 30, first axis symmetric vertical vibration mode appears. Considering that the difference of
altitude of both abutments is 7.2m in Usagibashi and the steepest slope is about 20%, we further
examined the effect of the difference of altitude of the abutments on the dynamic characteristics. But it
became clear that there was no effect of the difference of altitude of the abutments.

CONCLUSIONS

In this paper, we analyzed the effect of the bearing condition of the stress ribbon and the change of the

span to sag ratio on the dynamic characteristics of the stress ribbon bridge, and compared the analytical

results with the experimental ones obtained from the vibration test of Usagibashi. The principal
findings are summarized as follows:

(1) Bearing condition of the stress ribbon has no effect on the variation of the natural frequency of
the vibration mode coupled transverse and torsion whether the cross sectional shape of the stress
ribbon is uniform along the span length or not. But, in the case of axis and point symmetric vertical
vibration mode, the rigid connection of the stress ribbon with the abutments make the natural
frcquency higher.

(2) If thec bearing condition of the stress ribbon is the same, the highest natural frequency in Ist
vibraion of each mode appears in the coupled vibration of transverse to torsion in case of variable
cross sectional shape and in the axis symmetric vertical vibration in case of uniform cross sectional
shape along the span length.

(3) The natural frequencies of the point symmetric vertical vibration mode and of the vibration modc
coupled transverse to torsion increase according to the increase of the span to sag ratio. This may
be caused by the high rigidity due to the increase of the horizontal tensile force of cable.

(4) The span to sag ratio when the natural frequency has a maximum value is about 40 in case of the
axis symmetric vertical vibration mode. And, the natural frequency of the point symmetric vertical
vibration mode agrees with that of the axis symmetric vertical vibration mode when the value of the
span to sag ratio is about 60. In the range where the span to sag ratio is over 60, the axis symmetric
vertical vibration mode has the lowest natural frequency. This may be due to the change of axis
symmetric vibration mode from vertical vibration to longitudinal one.

(5) Relatively small span to sag ratio like Usagibashi produces the point symmetric vertical vibration
mode with the lowest natural frequency.
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