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ABSTRACT

Analytical prediction of response after strain localization or cracking for static problems is being increasingly
investigated by employing strain softening plasticity. In this study the authors explore the possibility of using
strain softening elasto-plasticity for the prediction of post-peak seismic response. Numerical implementation
of strain softening has been known to cause problems of convergence, load step sensitivity and discretization
sensitivity (or mesh sensitivity). Many of these difficulties have been surmounted for static analysis. This
study highlights the numerical problems associated with the use of strain softening in the solution of dynamic
problems and suggests methods of overcoming them. The results indicate that dynamic response does not
become unbounded due to strain softening. Strain softening, however, introduces a larger zero frequency
component as compared to strain hardening or perfect plasticity. The frequency content at frequencies other
than zero is not significantly altered.
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LOAD STEP SENSITIVITY

The strategy adopted in the past for incremental/iterative stress updating (Owen and Hinton, 1980) led to
accumulation of spurious plastic strains. This was earlier termed as path dependent behaviour (Mondkar and
Powell, 1978; Marques, 1984) and later, perhaps more appropriately, load step sensitivity (Bicanic and
Pankaj, 1990) or problem of spurious plastic strain (Ramm and Matzenmiller, 1988; Crisfield, 1991). While
the use of a wrong strategy can lead to spurious plastic strains in all plasticity problems the effect is more
pronounced for softening problems. Except for some investigations (Moin and Pankaj, 1994; Pankaj, Moin
and Barthwal, 1994) research in this regard has generally been confined to static problems where two
methodologies have emerged.

In the first conventional method (Strategy A), stresses are updated at the end of each iteration based on the
strain increment computed for that iteration. In the second (Strategy B), stress increment is computed for all
strain increments accumulated upto that iteration and the stresses are updated only after the iteration process
has converged.



These methodologies were incorporated for dynamic analysis in a computer program that used Newmark's
unconditionally stable direct integration algorithm for the solution of elastoplastic problems (Pankaj, Moin
and Barthwal, 1994). The initial stiffness approach was employed. It was seen that the presence of
acceleration dependent inertia forces and velocity dependent damping forces do not impose any additional
complexity when Strategy B called the dynamic total residual strategy is employed. A simple problem was
numerically solved to study the difference between the two strategies.

A bar element with a concentrated mass at one end as shown in Fig. 1a assumed to be undergoing axial
vibration was assumed to constitute an undamped single degree freedom system. A step function load as
shown in Fig. 1b was assumed to act on the mass of the system. The idealized elastic strain softening plastic
load displacement material behaviour is shown in Fig. Ic. The exact solution for this problem is available
(Moin and Pankaj, 1994).
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Fig. 1 (a) Undamped SDF system
(b) Step function load and
(c) Idealized load displacement behavior of the spring.

The displacement response comparison using the two strategies is shown in Fig. 2. It can be seen that for the
smallest time step (At =0.0lsec) the numerical procedures match well with the exact solution. The
difference between the exact solution and the numerical solutions becomes larger with the increase in step
size. In each case the results from the dynamic total residual strategy are closer to the exact solution. A study
of the variation of plastic strain with time shows that greater spurious plastic strain results when Strategy A is
adopted.

A single degree freedom system would yield the same results for static problems irrespective of the choice of
solution strategy. In fact for static problems the difference in the results from the two procedures emerges
due to inter element stress adjustments. At the first sight it is surprising to see a difference of such magnitude
for a single degree of freedom system in case of dynamic problems. This apparently is due to the inter
dependence of displacement, velocity and acceleration vectors. Thus the importance of the choice of the total
residual strategy for dynamic analysis cannot be overemphasized.



SEISMIC RESPONSE

SDF System

The base of a single degree of freedom (SDF) system of Fig. 1a with K=4100 N/mm and m=100 Kg was
subjected to an actual earthquake acceleration history. The corrected accelerogram of the Uttarkashi
earthquake of October 20, 1991 obtained at 30.738N and 78.792E (Earthquake Engineering Studies, 1993)
was used for the purpose. A constant viscous damping of 5% of the critical was considered and the bar was
assumed to be (a) Elastic, (b) Perfectly plastic and (c) Strain softening. For the strain softening case
E;=410 N/mm was assumed. The response was computed using the total residual strategy and Newmark
algorithm with A= 0.02 sec. The yield force value P,,=1.23x105 N was assumed. The displacement
response is shown in Fig. 3. It can be seen that for nonlinear cases the mass does not vibrate about the zero
displacement position. The Fourier analysis (Fig. 4) of the response indicates that in general, the predominant
frequency content does not change with the change in post-elastic constitutive behaviour. Some low
frequency components, however, appear to have been added to the response. Moreover, due to the mass
finding new mean position to vibrate about, a zero frequency component is also seen in the response (Fig. 4).
These changes of the mean position take place with the accumulation of the plastic displacements, which
happens in a short time and remains constant thereafter (Fig. 5). The maximum plastic displacement for this
example was found to be 48.56 mm and 54.94 mm for perfectly plastic and softening cases respectively.

It is interesting to see that elastoplasticity does not alter the predominant frequency response of the system.
It, however, introduces a zero frequency and some low frequency components in the response. It is also seen
that strain softening plasticity does not lead to an unbounded response and can be used with dynamic

problems.

Koyna Dam Analysis

Strain softening has been utilized in static analysis for prediction of strain localization or cracking. In order to
explore the possibility of using strain softening for prediction of cracking in a continuum under dynamic loads
the non overflow section of the Koyna dam which experienced an earthquake on Dec. 11, 1967 was analysed.
The structure was idealized using 136 eight noded isoparametric elements. The dam section was assumed to
be homogeneous with E =31.005x10°KN/ m?, unit weight p=2.442 KN sec’/m* and Poisson's ratio
v=0.2 (Chopra and Chakrabarty, 1971). Damping was assumed to be 5% of critical. Isotropic strain
softening plasticity using Mohr Coulomb yield function was employed to represent post-yield material
behaviour. The cohesion ¢ =7071 KN/ m” and friction ¢ = 62.73° were assumed (Owen and Hinton, 1980).
A linear post-yield softening modulus of 10% of E was also assumed. The dam was subjected to the
horizontal component of Koyna earthquake (Krishna, Chandrasekaran and Saini, 1969). The principal strain
plot at an instant when maximum principal strain (anywhere in the dam) is observed is shown in Fig. 6a.
Tensile strains are shown using double lines and compressive strains using single lines. Large strains can be
seen to be confined to a localized region. Figure 6b shows the regions that have undergone some amount of
permanent plastic strain at the end of the excitation. Localization is seen to be confined to small regions on
upstream and downstream faces. These simulations match well with the actual cracks that were observed
after the earthquake (Chopra and Chakrabarty, 1971).

CONCLUSIONS

Strain softening in the context of elastoplasticity appears to have the potential for predicting strain
localization or cracking in seismic problems. The results do not become unbounded and generally the
frequency content is not significantly altered. It is, however, important to use the correct stress updating
strategy to prevent spurious plastic strains.
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Fig. 2. A comparison of two stress updating strategies.
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Fig. 4. Fourier magnitude plot of displacement response.

3

Plastic strain (x107)

8

T YTy T T T T T T T T T

l'Yll'lllllll'llllll'Illl'll'llllll'lIlllllllllllllllll"Tll"llllll'l'llllll'l’llllllll'llllll'T
Perfectly plastic

————— Strain softening ]

‘lllllllllllllllllllllllllllllllllllllllllll‘llll‘llllIllllllllllllllllllllllIlllllllllllJllllljil

400

440 480 520 560 600 640 680 720 760 800
Time (sec) '

Fig. 5. Plastic strain variation with time.



nnnnnn

LRI R EREN Y]
LUTIRIRI NN 2]
pracess bt be Bi 44
MHECETIF 60 Fé
ORI RTRY NS
UCTTRINEN TR T

S RININEES)
144

1§§H \“:\Ez/

XN RN TR
+*++**"00 D

l+++*++f§ilo v e
L4 gt dean 0o

+++++++0000«--
' R RN
{

L I

—t—f— e —
—
et
——
—_
—

(a) (b)

Fig. 6. (a) Principal strain plot, (b) Yielded Gauss points.
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