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ABSTRACT

The purpose of this paper is to find out if the response amplitude of two adjacent buildings which collide
during an earthquake can be controlled by the interposition of unilateral visco-elastic gap elements. To this
end the dynamical analysis of two adjacent planar multi-storey shear-type frames, subjected to seismic
excitations, has been performed. Firstly a numeric procedure for solving the nonlinear equations of motion,
which allows partially elastic impacts as well as visco-elastic coupling, is presented. Secondly some numerical
applications under harmonic excitations are reported, showing that the dynamical characteristics of both
systems are considerably changed by pounding. Finally a parametric study points out that, with a suitable
choice of the gap element properties, the interaction between colliding structures can be exploited to control
the amplitude of their structural response.
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INTRODUCTION

Pounding between adjacent buildings due to earthquakes can be one of the causes of relevant or severe
structural damage. Reports on recent strong earthquakes (Bertero, 1986; Kasai ef al., 1992) show that
damages as a result of pounding can be divided into two groups: local damage at the contact area of adjacent
buildings and severe structural damage in which either partial or total failure occurs. It should be noticed that
pounding took place in approximately 40% of the heavily damaged or collapsed buildings during the severe
Mexico City earthquake in 1985. To avoid such inconveniences, modern seismic codes require a sufficiently
large separation between neighbouring buildings in order to enable each one to vibrate freely without contact.
However most of the existing constructions do not respect such provisions so they should be considered
risky. Moreover code provisions lead to building gaps that are inconsistent with the code philosophy
according to which large inelastic deformation can occur during major earthquakes.

Due to their central importance in seismic behaviour of adjacent buildings, pounding effects have been
recently investigated by many researchers from both a theoretical and an experimental point of view. In some
studies pounding has been modeled by unilateral gap elements which connect the two neighbouring dynamic
systems (Anagnostopoulos, 1988; Liolios and Galouissis, 1992; Maison and Kasai, 1990; Kasai et al., 1992;
Spiliopoulos and Anagnostopoulos, 1992). In other studies the impact forces have been determined imposing



the conservation of total energy and momentum of the colliding bodies, evaluating the energy dissipated by
means of an appropriate coefficient of restitution (Athanassiadou ef al., 1994; Conoscente et al., 1992;
Papadrakakis ef al., 1991). Some experimental tests have also made it possible to estimate consistent values
of the coefficient of restitution from measurements of pre- and post-impact velocities (Leibovich et al.; 1994;
Papadrakakis et al., 1995).

Resuming the results of a previous work (Pasquino ef al., 1995), the aim of the present paper is to investigate
if and when it is possible to control the amplitude of the dynamical response of colliding buildings by
interposing unilateral gap elements which consist of an elastic spring and a viscous dash-pot. Such devices
can, therefore, be considered as a particular type of passive control system for structural vibrations.

For this purpose the dynamical analysis of a planar model, consisting of two shear-type frames linked
together by these elements at corresponding floors, has been performed. Each gap element is activated when
the relative displacement of the two adjacent floors equals the gap size. As long as the relative displacement
of at least one floor is larger than the gap size, the two frames vibrate together as a coupled system. The
equations of motion are, therefore, piecewise linear and the dynamical response has been determined by a
numerical method. A special technique has been developed, which has the peculiar feature to consider a
partially elastic impact when the relative displacement equals the gap size and the spring shortening.

Some numerical investigations have been carried out under harmonic excitations in order to elucidate the
main parameters which govern the dynamical behaviour of the system. The results, reported in the form of
frequency response functions, show that the presence of unilateral constraints may determine a reduction or
an amplification of the structural response. The analyses under harmonic excitations point out how the
interaction of the two buildings strongly modifies the frequency response of both systems and show that it is
sometimes possible to control the response of both systems through the interposition of appropriate
dissipative gap elements, leading to a significant reduction of the structural response.

THE STRUCTURAL MODEL

The structural model, Fig. 1, is composed of two adjacent planar shear-type frames with a different number of
floors, nj and ny. Both frames have the same interstorey height and an unilateral visco-elastic gap element is
interposed between any two corresponding floors.
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Fig. 1. The structural model.

The dynamical degrees of freedom are the floor translations with respect to the ground, arranged as shown in
Fig. 1. The mass of the i-th floor and the stiffness and damping coefficients of the underlying interstorey are
indicated with M;, K; and C; respectively. The stiffness and the damping coefficients of the gap element
between the i-th and the n;+i-th floor are denoted with k; and ¢;. The gap size § and the allowable spring
shortening € are assumed constant for all the gap elements.



EQUATIONS OF MOTION

The equations of motion for the system under seismic excitations are written as follows
Mv + C(t)v + K(t)v = -MIV,4(t) +a(t) (1)
where v is the vector of the n| +n, degrees of freedom;
M s the mass matrix;
C(t) is the damping matrix at time t;
K(t) is the stiffness matrix at time t;
1 is a unit vector;

vg(t) is the free-field ground acceleration;
a(t) is a vector, of which the components depend on the effective unilateral constraints at time t.

The system of equations (1) is nonlinear because the damping matrix C(t), the stiffness matrix K(t) and the
vector a(t) depend on the number and the position of the unilateral constraints which are in contact with both
frames at time t. The mass matrix is constant and has a diagonal form, with the coefficients equal to the
storey masses. When there is no coupling between the two frames, i.e. no unilateral constraint is effective,

a(t) = 0 and the damping and stiffness matrices take the form

[C; 0] [K; 0]
C:LO CzJ’ K=[0 KzJ’

where C;, C,, K; and K, are respectively the tri-diagonal damping and stiffness matrices of both frames.
Two adjacent floors, corresponding to the degrees of freedom i and j=nj +1i, interact when their relative
displacement is greater than the gap size § , i.e. when

Vi—vj=5>0. (@)
In this case a force F;, expressed by the equation
Fj = ci(vi = vj) +kj(vi - vj-9), 3)

arises between the two interacting floors and some of the coefficients of matrices C(t) and K(t) and of vector
a(t) are modified as follows

Cii(t) =C;jj +c;; ij(t) = CJJ +Cj; Cij(t) = C]l(t) =—Ci,
Kii(t) = Kjj +k;; KJJ(t) = K]_] +k;; Kij(t) = Kji(t) =-kj;
aj(t)=k,;9; aj(t):—kifi.

When the floors corresponding to the degrees of freedom i and J cease to interact, these coefficients take
their initial values again.

SOLVING THE EQUATIONS OF MOTION

The Newmark numerical integration method has been used for solving the nonlinear equations of motion. It
has been set y=1/2 and B=1/4, which ensures the unconditional stability of the solution. A particular
attention has been deserved to the evaluation of the contact and separation times of two adjacent floors, in
which the matrices C(t) and K(t) and the vector a(t) have to be modified. These times have been determined,
within an accepted tolerance, by an iterative procedure based on bisection of time step amplitude At.

Impact and post-impact conditions
When the relative displacement between two adjacent floors equals the initial gap size 8 and the allowable

spring shortening €, an impact occurs. This condition, referred to floors corresponding to the degrees of
freedom i and j, leads to the equation



Vi—Vj—5~8=0. (4)
The impact times have been evaluated by the same iterative procedure utilized for the contact and separation
times. In this case the equations of motion do not change and the dynamical response depends on the
dissipated energy. This has been determined by means of a coefficient of restituition e, assuming a partially
elastic impact. The post-impact velocities have been evaluated according to the impact law, imposing the
conservation of momentum (Conoscente ef al., 1992)
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NUMERICAL APPLICATIONS

The numerical applications reported herein have the purpose to illustrate how the pounding between two
adjacent buildings may be exploited to control their response amplitude. In order to limit the number of
parameters which govern the behaviour of the structural system, two periodic frames have been considered.
This assumption is almost realistic and allows simple parametric studies without loss of generality. In the
following the two frames will be termed frame 1 and frame 2 and their mass, damping and stiffness
properties, constant for all the floors, will be indicated by M, Cy, Ky and My, C,, K, respectively. The
damping and stiffness characteristics of the unilateral gap elements, ¢ and k, have been also considered
constant for any couple of corresponding floors. In this way the structural system may be described by the
following nine parameters
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where g is the gravity and the other symbols have been previously defined. The excitation is provided by a
harmonic free-field ground acceleration

Ug(t) = Ugq expliot}

acting simultaneously at the base of both frames. Dynamic soil-structure interaction has not been taken into
account, so that the free-field motion coincides with that experienced by the base of the frames.

Three different structural systems have been taken into account, all subjected to a base acceleration of
amplitude 0.2 g. The first is composed of two single storey frames. Despite its simplicity, this system enables
to point out the main aspects of the frequency response of two buildings having the same height. Frame 1 is
stiffer than frame 2, the ratio between their fundamental periods is equal to two and their damping ratios are
both equal to 5% when they vibrate without interaction. In Fig. 2 the amplitude of the frequency response
function of the dimensionless shear force at the base is reported against the frequency ratio B, where @ and
o are the frequencies of the excitation and of frame 1 respectively and W is the weight of frame 1. In the
same figure the frequency response functions of the two frames freely vibrating without interaction are also
reported for comparison. The graphs of Fig. 2a refer to the case of elastic impacts between the two frames,
1.e. when no gap element is interposed and the coefficient of restitution e is set at one. As it may be noticed,
the curves related to the interacting frames exhibit two peaks which are in a different position in comparison
with the peaks of the curves of the two independent frames. Moreover the stiffer interacting frame shows a
remarkable increase of the higher peak amplitude. On the contrary the more flexible interacting frame shows
a decrease of the same quantity. From this point of view the stiffer frame is more stressed because of
interaction, while the more flexible is less stressed. However it should also be noticed that there exists a
range of frequencies, between the resonances of the two independent frames, where both curves exhibit an
increased amplitude in comparison with the curves of the free vibrating frames.
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Fig. 2. Amplitude of the frequency response functions of the shear force at the base of two single storey
frames: A2 = 200 s_l., a=025 f=1 y=05 E: 005, 5 =025 a) elastic impacts: e = 100, n=0;
u=e=0;, b) partially elastic impacts: e= 075, ¢) gap elements: =075, n=0125 u=1, g =05,



Furthermore in the range around the resonance of the independent stiffer frame the curve of the more flexible

frame shows an increase, while the curve of the stiffer one shows a reduction. On the contrary in the range
around the more flexible frame resonance the opposite situation occurs. The same remarks hold for the
graphs of Fig. 2b, which refer to partially elastic impacts for e = 0.75, but the frequency response functions of
the interacting frames present obviously a reduced amplitude. The graphs of Fig. 2c refer to unilateral gap
elements interposed between the two frames and e = 0.75. This case appears to be the more favourable. In
fact the frequency response functions present reduced amplitudes and the more flexible frame is nearly always

less stressed.
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Fig. 3. Amplitude of the frequency response functions of the shear force at the base of two frames having

three storeys: 2 =400 s_l, a=025 B=1, y=05 E: 0.05, 8= 05.  a) partially elastic impacts:

e=075n=p=e=0; b)gap elements: e= 075, n=0125, n=2e=1

The second structural system considered is composed of two frames, each having three storeys. The results in
terms of frequency response functions of the dimensionless shear force at the base are reported in Fig. 3a and
in Fig. 3b, which refer to the cases of partially elastic impacts and unilateral gap elements respectively. The
frequency range including only the first natural frequencies of the two independent frames is displayed. The



trend of the curves is practically similar to that of the sin
to be valid.

gle storey frames and the same comments continue

--—- Frame 1

— Frame 2

= interacting
a free

o interacting
o free

(a)
I‘i.l'l
l‘ .
ESSS'V' “ .
i 1 | | 1 T
0.0 0.5 1.0 1.5 2.0 2.9 3.0 3.5
B=5/w,
3 - ---- Frame 1 : fi;l::rading
?: -%— — Frame 2 :fi:::racﬁng
2 R
'R
A (b)
f
iR
1 1 /d, b\
'l‘ zdp qhuu
.’lBal uss’s
i I 1 | I 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
B=a/ Wy
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The third system taken into account is composed of two frames having one and three storeys respectively.
The same cases of the previous system have been considered and the results are reported in Fig. 4a and in
Fig. 4b. The displayed frequency range includes the first two natural frequencies of the three storey frame and
the fundamental frequency of the single storey one. As it may be noticed the curves of the interacting frames
are more involved than those of the previous cases. When no gap elements are interposed, Fig. 4a, the
response amplitude is dramatically increased for both frames in the frequency range between the fundamental
frequency of frame 1 and the second natural frequency of frame 2. Furthemore frame 1 is more stressed close

to the first resonance of frame 2. However it should be noticed that, in this case, the interposition of
unilateral gap elements leads to a considerable decrease in the response amplitude, as it may be seen in Fig.

4b.



CONCLUSIONS

A numerical method for the evaluation of the dynamical response of two colliding adjacent buildings has been
presented. A simplified but physically significant structural system, which allows to elucidate the main aspects
of pounding, has been considered. The case of elastic or partially elastic impacts as well as that of interposed
unilateral gap elements have been examined in order to investigate when this phenomenon can be exploited to
control the response amplitude. The parameters which govern the behaviour of the system have been pointed
out and some numerical applications in the frequency domain have been developed with reference to a few
but significant sample structures. The results show that pounding strongly modifies the dynamical
characteristics of the colliding structures, moving their natural frequencies and varying the peak amplitudes of
their frequency response functions. Whether pounding may be beneficial or not to reduce the response
amplitude essentially depends on the frequency content of the excitation and on the properties of the
interposed unilateral gap elements. Further investigations are needed in order to examine the response
amplitude sensitivity to a variation of the structural parameters. This will be the subject of a paper to come.
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