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ABSTRACT

This paper deals with active vibration control of single degree-of-freedom (SDOF) hysteretic oscillators,
where it is assumed that only the displacement and the velocity of the oscillator may be observed whereas
the hysteretic component is hidden. Hence, Incomplete State Observation is assumed. A partially
recurrent neural network, structured as a Multi Layer Perceptron (MLP) neural network is trained to
estimate the response of the oscillator. The identified model is the well-known Innovation State Space
Model and the identification is based on known measurements of the loading, the displacement and the
velocity, so in fact the Extended Kalman Filter problem is solved. The closed-loop controller is also
modelled as a MLP partially recurrent neural network, which is trained in a way that the mean square
of the responses of the oscillator is minimized. The method has been applied to a Bouc-Wen oscillator
subjected to Gaussian white noise filtered through a Kanai-Tajimi filter. The output of the filter is
assumed to be observed and forms the input to the system.
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1 INTRODUCTION

The idea of using automatic control systems to reduce the response of civil engineering structures has
been actively pursued by several researchers since it was proposed by Yao (1972). Much of the theory
applied by civil engineering researches is rooted in classical and modern control techniques, which ba-
sically have been developed within the aerospace, electrical and mechanical fields, see e.g. Soong (1988).

The actual control process is initiated by sensors placed at strategic points on the structure. These
sensors measure the appropriate structural response, and this information is then used to compute the
feedback control forces. One well-known technique for state space estimation for control purpose is the
Extended Kalman Filtering (EKF) technique, see e.g. Thesbjerg (1992). Although the EKF has been
successfully used in applications, it is known that the EKF might show poor convergence properties in
certain cases. The estimates may be biased and even divergence may occur. Further, the computation
time required for convergence, if at all, increases quadratic with the number of degree-of-freedom of a



structural system. However, the main problem with the state space estimation techniques is the ex-
tensive computing which is necessary to convert the raw measured response data to control forces, i.e.
real-time control does not seem to be feasible and cost effective due to the computing time and resources
to individual structures. It should also be mentioned that one has to do assumptions when using the
traditional structural control algorithms. The assumptions that limit the accuracy of the solution are
that the real structure, material, sensors and actuators do not behave exactly as their mathematical
model, i.e. that the model is controlled in stead of the real structure.

In order to overcome the mentioned problems much research has been done in the field of active con-
trol based on artificial neural networks. Artificial neural networks have been investigated for control
of complex nonlinear systems with applications to model the nonlinear behaviour of the system, from
which a control algorithm can be developed, or through learning, to develop and represent the control
algorithm. A survey of artificial neural networks in the realm of modelling, identification and control of
nonlinear systems is given in Hunt et al. (1992). Artificial neural networks have been used for process
control in different fields such as biological and electrical systems, see e.g. Hunt et al. (1992). However,
in the area of structural control only few investigations have been done. Doo et al. (1989) use an artifi-
cial neural network control algorithm to suppress vibrations in linear single degree-of-freedom systems
subjected to dynamic loadings. Miccoli et al. (1994) estimate the state in the problems of noise and
vibration active control using artificial neural networks. In Rehak and Garrett (1992) the applicability
and use of neural computing for structural control is discussed.

The aim of this paper is to investigate the possibility of using artificial neural networks to estimate
the response of a single degree-of-freedom hysteretic oscillator for incomplete state observations. The
ability of the neural network to act as a simulator is investigated. Further, the performance of the
neural network controller is investigated for incomplete state observation. The response of a single
degree-of-freedom hysteretic oscillator is described in Section 2. In Section 3 the principle of the Multi
Layer Perceptron neural networks used to estimate the response of the oscillator and to estimate the
control force is shown. Neural network models of the hysteretic oscillator and the closed-loop controller
are formulated in Section 4 and 5, respectively. As an example in Section 6 the neural network models
are applied to a Bouc-Wen oscillator subjected to Gaussian white noise filtered through a Kanai-Tajimi
filter. Conclusions and references are given in Section 7 and 9, respectively.

2 SINGLE DEGREE-OF-FREEDOM HYSTERETIC OSCILLATOR

A linear single degree-of-freedom hysteretic oscillator is described by the stochastic differential equation,
see e.g. Suzuki and Minai (1985)

X(t) + 26woX (t) + w§ (aX () + (1 — @) 2(t)) = F(2) (1)

X (¢) is the displacement, X (¢) is the velocity, X (t) is the acceleration and F(t) is the excitation. ¢ is
the damping ratio and wy is the circular eigenfrequency of the corresponding linear oscillator. « is the
elastic fraction of the restoring force. Z(t) is the hysteretic component of the restoring force, which is
assumed to be modelled by the Bouc-Wen model, see Wen (1976)
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n is a parameter, which controls the level of non-linearity. If 3 + v = 1, 2y can be interpreted as the
yield displacement of the oscillator.

(1) and (2) can be written on state vector form

X(t)=a(X(1)+bF(t), t>0, X(0)=0 (3)
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X=|X|, aX)=|-2wX-w}(aX+(1- 0Z) |, b=|1 (4)
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Normally, the state variables X (¢) and X () can be observed, whereas Z(t) is non-observable (hidden).
Assuming the excitation F(t) is constant at the value Fy_; = F(tx—1) throughout the interval [t;_1, ¢/,
where t; = kAt, (3) can then be integrated on the following form

Xk:]'-(Xk—l,Fk-—l) (5)

where X = X (tx). The vector function F(X—_1, Fx—1) is a non-linear and non-analytical function of
X _1 because of the non-analytical constitutive relation (2).

A neural network model of (5) involves in principle a replacement of F(X_;, Fr_1) by an analytical
function. It is one of the aims of this paper to investigate the limits of such an approximation.

3 NEURAL NETWORKS

The neural networks are structured as Multi Layer Perceptron (MLP) neural networks containing:
e An input layer of n; neurons with linear neuron functions without offsets.
e A fictive input layer with one neuron with constant value ‘1’.

e A hidden layer with a sufficient number of neurons ny with non-linear neuron functions including
offsets. The offsets are organized by adding the fictive input neuron. The non-linear function used
is the tanh-function. The necessary number of hidden neurons can be found by trial and error.

e An output layer of np neurons with linear neuron functions without offsets.

There are connections between the n; input neurons and all hidden neurons, with weights wy;. In the
same way there are connections between all hidden neurons and all output neurons, with weights w,y.
Further, there are connections between the fictive input neuron and all hidden neurons, with weights wp,.

The output of the network Oy, Os, ..., Oy, can be calculated by feedforward based on the weights and
the input to the network I, I5,...,I,,. The output O, of the o’th neuron in the output layer is

ny nr
O, = > woptanh (who +>° whiI,-> (6)
h=1 i=1

4 MODELLING OF HYSTERETIC OSCILLATOR BY NEURAL NETWORKS

A neural network model of the hysteretic oscillator described by (5) is formulated by a Non-linear
Innovation State Space Model where p state variables are observed, see Sgrensen (1994)

X(k) = F(X(k-1),F(k-1),BE(k—1),w) (7)
Y(k) = HX(k)+ E(k) (8)
X (k) is the estimate of the state vector at time step k and E(k) is the prediction error vector of order D

at time step k. w is a vector of weights in the MLP network. Y (k) is the measured observation vector
of order p at time step k. H is the observation matrix of order p x 3.

Incomplete State Information may occur, i.e., X is not completely measurable. The matrix H can be
chosen to H = [1,,0,3_,], where 1, is a p X p unity matrix and 0,3, is a p X (3 — p) zero matrix. In
this way the elements in H X (k) are equal to the first p elements of X (k). For the hysteretic oscillator



the number of observed states p can then be p = 1 if only the displacement X (k) is observed, p = 2 if
the displacement X (k) and the velocity X (k) are observed and p = 3 if all three state variables X (¢),
X(k) and Z(t) are observed. The net is a partially recurrent network as output from the net is used as
input in the next step.

4.1 Training of Neural Network

The weights w in the neural network F given by (7) are found by training. The training set consists of
N input time series, each of length K. Feedforward as described by (6) is used to estimate the output
of the network. There are several methods for updating the weights w, see e.g. Hertz et al. (1991).

Let E(n,k, w) be the error vector between the estimates and measurements of the nth training time
series at the kth time step. The following performance index J(w) is minimized

Jw) =33

n=1

K
> ET(n, k,w)E(n, k,w) (9)
k=1

The gradient of J(w) with respect to the weights w is needed as search direction in the iteration scheme.
This is calculated from

dJ(w .S dX(n, k,w)

The gradient of the estimated state variables X (n, k, w) with respect to the weights w can be updated
from the recursive equation

win k) = ZOEL)_ o k) 4 [6(n, k) - Kin ) H] (n, &~ 1) (11)
where
_ ‘_95("’ k,w) o _ X (n, k,w) 5 _ X(n,k,w)
‘P(na k) - B’UJT ’ Q(na k) - GXT(n, k _ 1,‘UJ), K(n? k) - 8ET(n, k _ 1, w) (12)

@(n, k), B(n, k) and K(n,k) can be found by differentiation of the output of the network in (6) with
respect to the weights and input. @(n,k) and K(n,k) can be interpreted as the dynamic transfer
matrix of an equivalent linear system and the corresponding extended Kalman filter gain, respectively.

4.2 Simulation and State Prediction by Trained Neural Network

When the trained neural network JF given by (7) is used as a simulator only the initial values Y (0) =
H X (0) of the measurable state variables and the complete excitation time series F'(k) are measured
without any error. The non-observed state variables are set to 0 to obtain the initial values X (0) = X,.
As no further measurements of the state variables are made the prediction error vector E(k) is fixed to
0. The state variables in the simulator neural network are predicted by

X(k)=7F (X(k—1),F(k—1),E(k - 1), w), X(0)=Xo E(k-1)=0 (13)

When the trained neural network is used as a one-step ahead predictor the measurable state variables
Y (k) = HX (k) and the excitation F(k) are measured at every time step. In this case the state
variables are predicted by

X(k)=F(X(k—1),F(k-1),E(k—1),w), Ek-1)=Y(k-1)- HX(k-1) (14)



5 MODELLING OF ACTIVE CONTROLLER BY NEURAL NETWORKS

After the model of the hysteretic oscillator (7) has been settled, an active closed-loop controller is cou-
pled to the system. The control force C(k) is used to minimize the mean square of the observable part
of the response X (k) of the hysteretic oscillator. It is assumed that the total excitation of the oscillator
can be written F(k) + C(k). In the final active closed-loop control configuration the neural network
model of the hysteretic oscillator is used as a one-step ahead predictor to estimate the state vector to
the next time step. The control force can then be estimated by the controller network based on the
estimated state variables.

Because no state variables can be measured during training of the controller neural network the trained
network F given by (7) is used as a simulator to estimate the response of the controlled oscillator

XT(k) = [X(k), X(k), Z(k)]. Hence

X(k)y=7F (X(k-1),F(k—1)+C(k=1),E(k-1),w), E(k-1)=0 (15)
The control force C(k) is modelled by a MLP neural network by using closed-loop control
Ck) =G (Y(k),w.), Y(k)=HX(k) (16)

where w. is a vector of weights in the network modelling the controller. Obviously, the feedback part of
the control law can only depend on the state variables Y (k) = H X (k) which are measured (observed),
and no noise term i3 present in the model.

The weights w, of (16) are estimated, so the response predicted by (15) becomes minimum. At the
training the same input time series F'(k) are used as applied at the training of the neural network (7).
5.1 Training of Neural Network

The following performance index, which is widely used in structural control, see e.g. Soong (1990), is
minimized for the controller network (16)

J(w.) = L i i (YT n,k,w)Y (n, k,w.) + aC*(n, k wc)) (17)
n=1k=1
Y (n, k,w,) = HX (n, k, w,) (18)

where a is a positive scaling factor and X (n, k, w,.) specifies the output of (15) for the nth time series
at the time step k using the controller (16) with the weights w..

The gradient of J, (wc) with regard to the weights w, is

dJ(we) dX(n, k, w,) dC(n, k,w,)
-YT . H 3 vy c . 3 vy [
“dul nZ kzl , W) Tdwl +aC(n, k, w )—dwz, (19)
The gradient of the estimated state variables X (n, k, w,) and the control force C(n, k, w.) with respect
to the weights organized in the vector w,. can be updated from the recursive equations, cf. (11)

dX(n, k,w,.) = .
W (nk) = —%U—TL) = &(n, k) (n,k — 1) + F(n, k)ve(n, k — 1) (20)
dC(n, k,w, -
veln, k) = LCORYD (0 k) 4 b, ) Hep (. (1)
where
0X (n, k, w.) _0C(n, k,w,) _0C(n,k,w,.)
F(n k)= 3Cm k- Lw)’ p(n, k)= T, D.(n, k) = m (22)

As seen the gradient is no longer dependent on variations of the observation noise, because this has
been fixed to E = 0 during the training phase.



6 EXAMPLE

Corresponding relations F'(n, k) and X (n, k) between the excitation process and the response process are
obtained by numerical integration of (3). Realizations of the excitation process are obtained by filtering
non-stationary white noise through a Kanai-Tajimi filter. The excitation process is then obtained from
the stochastic differential equations, see Tajimi (1960)

F(t) = 2¢w,U(t) + w2U(t) (23)
U(t) + 2¢wsU (t) + wU(t) = —r(t)W (1) (24)

F(t) can then be interpreted as the negative of the ground surface acceleration, and (; and w, are the
damping ratio and circular eigenfrequency of a single degree-of-freedom shear model of the underlying
subsoil. {W(t), t €]0, co[} is unit intensity white noise with the auto-spectral density function 5. The
deterministic modulation function is given as follows, see Saragoni and Hart (1974)

r(t) = o exp ( 1n(2)% “ln (i) -1 (25)
=19 —
\ 2-ln(k)-1

The amplitude ry defines the strength of the excitation. This is selected so the peak value of all
excitations is normalized to 0.5 g, where g is the acceleration of gravity. ¢; and ¢, are respectively the
instants of time of maximum intensity and the time where the intensity has dropped to half value. The
following parameters are used for the hysteretic oscillator:

(=001, wy=2rs!, a=005 B=7=05 n=1 2=00lm
Cs=0-5a ws:303_1, ti=3s, ty=15s

Three input-output time series are generated. The first two of these, labeled A and B are for training.
The last one labeled C is selected for verification. The displacement responses of cases A, B and C are
classified as small, large and medium. The minimum and maximum of the displacement z, the velocity
4 and the hysteretic component z are shown in Table 1.

Table 1: Minimum and mazimum values for data series used for training and verification.

Series min(z) max(z) min(¢) max(¢) min(z) max(z)
[m] [m] [m/s]  [m/s] [m] [m]
A —0.044 0.043 —-0.342 0.348 —-0.033 0.033
B —0.101 0.079 -—-0.588 0.376 —0.047 0.041
C —0.080 0.054 —0.508 0.487 —0.043 0.041

In this example the Broyden-Fletcher-Goldfarb-Shanno variant of the Davidon-Fletcher-Powell mini-
mization algorithm, see Press et al. (1988), is used to minimize the performance indices J(w) and
Je(w,) with respect to the weights w and w,.. As stop criteria the performance index for case C is
evaluated. When this index increases the network is overtrained. So the optimal neural network weights
are obtained when the performance index has minimum for case C.

During training of the neural networks the input variables are scaled so the mean value of each variable
is ‘0’ and the standard deviation is ‘1’. Thereby, the components of the performance indices are of the
same properties.

A MLP neural network is trained with the two training cases A and B. During training incomplete
state observation is assumed with p = 2, i.e. the displacement and velocity are observed and the hys-
teretic component is hidden. The ability of the trained neural network to act as a simulator is shown in



Fig. 1 where the displacement for case C' (with medium displacements) is shown. As seen the trained
neural network is capable of approximating the non-linear and non-analytical vector function (5) very
well when it as taken into account that only two of the three state variables are observed and that the
neural network is trained with two time series with smaller and larger displacements, respectively.

Next, active control of the oscillator is considered. The trained MLP neural network F is used to
estimate the response of the oscillator. A MLP neural network is trained with cases A and B to
estimate the weights of the controller network (16). In Fig. 1 the measured displacement, the estimated
uncontrolled displacement (estimated by the trained neural network JF acting as simulator) and the
estimated controlled displacement are shown. For simplicity a = 0 has been used in (17). Thereby,
there are no limits on the applied control force. As shown in Fig. 1 the neural network controller is able
to decrease the displacement of case C significantly.
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Fig. 1: Measured, uncontrolled and controlled displacement for case C.

7 CONCLUSIONS

In this paper the ability of a partially recurrent multi layer perceptron neural network to model the
response of a single degree-of-freedom hysteretic oscillator is investigated. It is assumed that the dis-
placement and the velocity of the oscillator at the previous time step can be measured whereas the
hysteretic component is non-observable. The neural network trained with two time series with rel-
atively small and large displacements of the oscillator shows a very good ability of simulating the
displacements of the oscillator for a time series with medium displacements. Therefore, it seems pos-
sible to approximate the non-linear and non-analytical vector function modelling the response of the
hysteretic oscillator by a neural network, i.e. an analytical function.

The ability of a neural network to model an active closed-loop controller of a hysteretic oscillator is next
investigated. It is assumed that there is no limit on the applied control force. Again the time series
with the relatively small and large displacements are used for training. During training the already
trained neural network is used to simulate the response of the oscillator. The trained neural network
controller is capable of reducing the displacements of the oscillator significantly when applied to a time
series with medium displacements.



By using neural networks for real-time control the large computing time that usually is necessary for
one-step ahead prediction of the response and determination of the control forces can be omitted as
feedforward in a trained neural network is very fast. The neural networks can be updated by training,
this may require a large computing time, but it can be performed off-line. Another advantage of using
neural networks for control is that the neural network modelling the response can be trained with ‘real’
data from measurements, thus a non-linear model of the real structure is controlled—not a matematical
model with assumptions about the behaviour of the structure, material, sensors and actuators.
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