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ABSTRACT

In this study, we describe a Boundary Element Method (BEM) to simulate long-period strong ground
motions in 3D basin structures consisting of multi-layers. Our BEM uses various newly developed
techniques; asymptotic solutions of Green's function for layered spaces by Hisada (1995), and the Green's
function Iibrary. This BEM produces numerically much more stable results without heavy computation
than Hisada et al. (1993).
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INTRODUCTION

Since the unprecedented damage in Mexico City and the Bay Area of San Francisco during recent
earthquakes, it has been widely recognized that surface waves locally generated in sedimentary basins,
have great influence on long-period structures, such as high-rise buildings, oil storage tanks, and long-span
bridges. Recent observations using seismic array data have indicated that the generation and propagation
of those surface waves are strongly affected by three dimensional structure of the basins (e.g., Frankel ef
al., 1991; Kinoshita et al., 1992). In order to simulate those surface waves in 3D structures, Finite
Difference Methods (FDM) and Finite Element Methods (FEM), so far, have been most widely used
(Toshinawa and Ohmachi, 1992; Frankel and Vidale, 1992; Graves, 1993; Yomogida and Etgen, 1993;
Olsen ¢t al., 1995). However, the applications of those methods to large scale 3-D models require the huge
amount of computer memory, CPU time, and pre- and post-processing. Also, we have to carefully check
for the accumulation of numerical errors (e.g., numerical grid dispersion; see Frankel and Vidale, 1992).

On the other hand, the Boundary Element Methods (BEM) are an alternative choice for this purpose (e.g.,
Sanchez-Sesma and Luzon, 1995). It is well known that the BEMs have great advantages over FDM and
FEM regarding the computer memory, the radiation condition, pre- and post-processing. However, it is
not easy to extend the conventional BEMs, which are based on Green's functions for homogeneous spaces,
to realistic multi-layered structures, because large number of boundary elements are required along the all
boundaries between layers.

One way to solve this problem is to use the BEMs based on Green's functions and/or the normal mode
solution for layered spaces (e.g., Hisada er al., 1993). Hisada et al. (1993) developed a 3D BEM for
layered spaces, and successfully simulated long-period strong ground motion (6 - 10 sec) for the Kanto
and Los Angeles basins (Hisada et af., 1993; Hisada, 1994). However, they used an simple assumption that
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Fig.1. A 3D sedimentary basin model used in this study

the interfaces between the inside (basin) and outside (bedrock) structures as being vertical. In addition,
they found their BEM has numerical instabilities, because 1) the integrands of the wavenumber
integrations for computing Green's functions have extremely slow convergence, when a source and a
receiver are located at similar depths; 2) they used the Haskell's propagator matrix for their Green's
functions, which has inherently numerical instabilities at higher frequencies.

In this study, we will show a 3D BEM for layered structures using the newly developed Hisada's Green
function (1995). First, this BEM is much more numerically stable than the previous, because the R/T
matrix method is used. Second, the introduction of the asymptotic solutions by Hisada (1995) guarantees
quick convergences of the integrands even for the cases that a source and a receiver are located at similar
depths. Third, the asymptotic solutions eliminate the singularity problem of the BEM formulation. Finally,
a Green function library technique is demonstrated, which greatly reduces the CPU time.

FORMULATION OF 3D BEM FOR LAYERED SPACES

Fundamental Equations for 3D BEM

We consider the system depicted in Fig.1 to model a 3D sedimentary basin structure. It consists of the
inside and outside domains; the inside (basin) domain consisting of sedimentary layers overlying the
crustal layers, and the outside (bedrock) domain of only crustal layers.



From the representation theorem, we get
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for the sedimentary basin (inside) domain, where [, is the boundary between the bedrock and the basin
domains, Y is the source point on [, and X is the observation point, U; and P; are the ith component of the
displacement and the traction, and U}, and P}, are those of Green's functions for the layered hali-space.
The superscripts b and s represent the bedrock and sedimentary basin domains, respectively. Uf(h(y) and

U}f(y) are incident waves at Y, which can be the plane body waves, the surface waves, or the seismic
waves from earthquake sources.

Green's function for layered half spaces

We adopt Hisada's Green function (1995), which has the following advantages:

1) It is numerically stable up to very high frequencies, because we adopted the R/T matrix method
complelely free from the exponential terms growing with frequencies (see e.g., Hisada, 1994).

2) The introduction of the asymptotic solutions can climinate any difficulties for the wavenumber
integration even for the cases that the depth of a source point is equal or close to that of an observation
point (Hisada, 1995). Green's function in this case is expressed as the following simplified form

G(r.0,z;z5) = | [{d(z;z5)-d%(z;25) I (tk)dk +D'°‘(1‘,Z;Zg)] S(@), (&)

0
where G is displacement or traction Green's function assuming that the locations of a source and a receiver

are at (0,0,7zg) and (r.0,z) in the cylindrical coordinale system, respectively, d is the original displacement-
stress vector, d? is its asymptotic solution which converges to d with increasing wavenumber, D is the
analytical integration corresponding to d, J is a Bessel function, S is a sinusoidal function, and k is the
horizontal wavenumber (see Hisada, 1994). The integrands can be casily numerically integrated, because
the {} part quickly goes to zero with increasing k (see Hisada, 1995 for the details).

The FORTRAN programs for this Green's function are open to public use vie Internet. The address of the
anonymous FTP site to obtain them is "coda.usc.edu” or "128.125.23.15", and the directory is
"pub/hisada”. Please check the README lile in this directory first for the newest information.

Discretization

We discretize the boundary I'y, into boundary elements. For the simplicity, we use the triangle elements
with constant displacements and tractions. In this case, equation (1) can be

M
CRUM+Y | Py .y U™ - U (xy) PP AT (x) = U, (6)
m=1 Fom
where m and n are the element numbers for the boundary element and the element with the source point Y,
respectively, and M is the total number of the elements. Similarly, we get the equation for the basin
domain corresponding to equation (3).

As shown in Fig.1, we can approximate Iy by truncating the BE discretization at a certain depth, that
greatly reduces total number of boundary elements (sec Hisada et al., 1993).
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Fig.2. A local boundary I} to evaluate coefficient C} and to avoid the singularity problem

Coefficient Cj_and the Elimination of the Singularity problem

It is well known that the boundary integrations with Pi*k in equation (6) have the singularity problem when
m = n. This can be solved by considering both the integrations and the evaluations of coefficient Cjy,

simultaneously (e.g., Rizzo et al., 1985). When evaluating coefficient Cyx, we can simphlify Pfk to a
function including the singularly terms only, such as the static Green's functions. In this study, we adopt

the Hisada's asymptotic solutions D%(r,0,z;zs) in equation (5) as the simplified Green's functions, because,
1) they include the all singularity terms even for the case that a source point is located at layer boundaries,
and 2) they are analytic solutions without the numerical wavenumber integrations (Hisada, 1995).
In this case, equation (6) can be
b bz
Cle =- [ P{oxy) dlx) =- | PRxy) dr(x), 7

where Pﬂ;‘ is Hisada's asymptotic solution corresponding to the traction Green's function. It is easily

confirmed that I'L is not necessary to be I',, and can be a local boundary covering an arbitrary small
domain including the source point Y. This is a very useful fact for our formulation, because we will

approximate [y, by truncating the BE discretization at a certain depth, and the approximate I', would not
evaluate the exact value of C§Y.

As shown in Fig.2, we divide I into the two parts; one is LlE part of I'L on Iy, (= Ty; the boundary
element with the source point) and the other is the rest of I't, (= ). Then, equation (7) will be
Cit = - [ PEy) dreo) = CfF - Pfocy) o), ®)

where,



'n

Chy) =- j PR(x,y) d['(x) . 9

Note that the all singularity terms are in the integration of equation (8), but not equation (9).

Finally, substituting equation (8) into equation (6), we get

M
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where,
1 (for m=n) l

‘ 0 (for m#n) !
In cquation (10), there are no singularity problems, because, when m = n (X =Y), the all singularities in

(1)

8mn =

Pibk* are subtracted by Pf’k‘1 The same formulation is applied for the inside domain.

Note that a boundary element must be within a layer and cannot cross layer boundaries in the formulation
presented in this paper. This is because, in the source layer, the Hisada's asymptotic solutions consist of
the direct waves from the source point and the reflected waves {rom the source layer's boundaries, which
represents physically appropriate wavefield in this layer. However, in a layer next to the source layer, the
solutions consist of only the transmitted waves from the source layer and lack the reflected waves (see
Hisada, 1995). Therefore, if an element crosses a layer boundary, the Hisada's solution does not represent
appropriate wavefield in the part crossing the boundary.

Matrix Representation and Linear Equations
Equation (10) can be expressed by matrix forms,

M
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Changing n from 1 to M in equation (12), we get a matrix equation
[ap*]{ur) - [aUr]pe) ={ure), (14)
for the bedrock domain, where,
(0% = (U2 008), (U2 0202). .., (UM U UM,
[P} = {(PLpy1 P, (P2,py2,Piz), ., (P4M PP PIMT
; (Ulh} — {(U’Ehl,UJhl,Ughl)’ (U{hZ’U)}m’Uth), - (U){hM’UyghM’Ung)}T, (15)
an
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for the sedimentary basin domain.
The linear equation for the tractions along the interface (I'y) between the two domains is obtained from
equation (14) and (17) and is expressed as

(aps][ap?] [ aur] L aus)) (ps) = [aPs] [aPP] {U) - {Us), (18)
The displacement is obtained by

(Us) = - [Apt] [ aUP] (s} + [ APP] {UT), (19)
where we used

{UP} ={U?), and PP} =- {P"}. (20)

Finally, displacements at arbitrary points are computed by substituting the displacement (19) and traction
(18) on T, into the representation theorem. For example, displacement at Y in the bedrock domain is
expressed by

UL(y) = U(y) - J [P (x,y) U;Px) - U (x,y) PP JdT (). @

Tu
Also we get Uj(y) using the same procedure.

Green Function Library

In our BEM, most CPU time is consumed for computing Green's functions for layered half-space, because
a huge number of the wavenumber integration (15) is needed for the all combinations of sources and
receivers along the boundary, possibly millions for large scale basin models.

One of the best ways to reduce the CPU time is to construct the Green function library first, and then to
start BEM computations using the library values and interpolation techniques. This technique has been
using for the inversion analysis of earthquake source modelings (e.g., Wald and Heaton., 1994). From
equation (15), Green's function for layered half-spaces can be

G(r,0,z;75) =j [(d(z;Zg)~d“(z;ZS) Hirk)dk +D“(r,z;zs)} S(0) = L(r,z;zs) S(6) , 22)

4]
Note that the sinusoidal function in equation (22) is out of the wavenumber integration. Therefore, what
we construct is a 2D library L(r,z;zg) regarding z and r, but not a 3D library.

As an example, Fig.3 shows the real and imaginary parts of three components in a library L(r,z;z5) using a

three layered model. As expected, receivers closer to the source point have larger amplitude.
CONCLUDING REMARKS

We showed a new 3D BEM for layered spaces, in which we used various new techniques: Green's

function and its asymptotic solution by Hisada (1995), and the Green library. We will show some results
for applying this BEM to actual sedimentary basins at the conference.
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Fig.3. Anexample for a Green's function libray using a three-layered structure. The
real and imaginary parts of Qy, Qx.r, and Qy , are shown as the functions of z
and r (see Hisada, 1995, for the details). The circles in the figures are the
focation of the source point.
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