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ABSTRACT

The performance of multi-span continuous bridges under seismic excitation and the influence of spatial
variability of seimic waves on the dynamic response of bridge structures are investigated. A seismic wave
which is spatially variable may be evaluated with a simplified cross-spectral matrix of the modified Kanai-
Tajimi type. This seismic wave is assumed to arrive at each of the pier footing with a phase lag and with a
variation in dynamic characteristics. The equations motion for the structure including the soil-foundation
system are obtained by the substructure method. Since these equations contain nonproportional damping
matrices, complex eigenvalue analysis is performed. The results of random vibration analysis are expressed
using rms displacements and rms sectional forces at typical nodal points of the model. It is shown that the
nonuniform excitation of supports of mutli-span continuous bridges due to spatial variation of seismic wave
has particularly predominant effect for out-of-plane vibrations.
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INTRODUCTION

The earthquake response analysis of civil engineering structures is often performed applying identical
excitation at all support points. While this approach may be satisfactory for ordinary building structures,
long-span structures such as industrial buildings, bridges and dams experience different support movements
due to the spatial variability of input seismic wave motion. Several researchers in the past (for example,
Somaini (1987), Zerva ef al (1988), Kawano et al (1991), Berrah and Kausel (1992), Kiureghian and
Neuenhofer (1992), Nazmy and Abdel-Ghaffar (1992)) have carried out studies related to this problem and
have identified some of the major effects of nonuniform support excitations on the response evaluations. The
emphasis in the present study is to examine the influence of spatial variation of seismic motion on the in-
plane and out-of-plane vibrations of bridge structures. The dynamic soil-structure interaction between the
superstructure and the soil-foundation system, which is influenced by the proximity of their natural
frequencies and the stiffness and damping of the soil-foundation, also plays important roles on the dynamic
response and is considered. Figure 1 shows the model of a multi-span continuous bridge including
foundation considered for study. The ground motion is assumed along the bridge axis for in-plane vibrations
and perpendicular to the bridge axis for out-of-plane vibrations.



FORMULATION

The governing equation of motion

The multi-span continuous bridge is discretized by finite element method. The equation of motion is obtained
by the substructure method in which the total system is hypothetically divided into the superstructure and the
caisson-soil foundation system. The displacement of the superstructure can be expressed as the sum of the
dynamic displacement of the structure on a fixed base, and the quasi-static displacement due to the
interactions with the foundation. The dynamic displacements of the fixed-base structure are treated as the
linear combination of the dominating lower vibrational modes. The dynamic response due to seismic motions
are mainly dependent upon these modes. The equation of motion of the superstructure is expressed in terms
of generalized coordinates which correspond to the lower vibration modes obtained by eigenvalue analysis.

The caisson-soil foundation system, at each support of bridge pier, is modelled as a rigid body which has
frequency-independent impedance functions, with two degree-of-freedom of horizontal translation and
rocking about its center of gravity. This kind of modelling of impedance functions corresponds to the soil
condition in which an uniform layer overlies on a firm half-space substratum (Beredugo and Novak (1972),
Yamada et al (1979)). Figure 2 shows the caisson-soil foundation model used in the study.
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Fig.2 Section of a main caisson footing
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Fig.1 Analytical model of multi-span continuous bridge
including footing-soil foundation system

The governing equation of motion for the total system is obtained by combining the equation of motion for
the superstructure and the equation of motion for the caisson-soil foundation system, using the compatibility
conditions of displacements and the equilibrium conditions of forces at the base nodal points, as
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in which [[ B .]is the unit matrix, subscript s denotes the superstructure, subscript f denotes the caisson-

soil foundation, [®] is the modal matrix of the undamped superstructure with fixed-base, w 18 the natural
frequency of the superstructure with fixed-base for jth vibration mode, B is the corresponding damping

ratio, #, is the ground acceleration, u,is the displacement of the gravity center of the foundation (which



consists of translational and rotational components) , #° is the dynamic displacement of the unrestrained

a

nodal points of the superstructure with fixed-base and ¢ is the modal displacement of the superstructure.

The equation of motion (Eq.(1)) contains nonproportional damping matrix. Therefore, the conventional
modal superposition tecnnique based on classical damping, in which the damping matrix is orthogonal with
respect to its undamped real-valued mode shapes and the equations of motion can be decoupled, can not be
applied (Villaverde (1988)). One of the approaches for dealing with such problems is the application of
complex eigenvalue analysis. For this purpose, firstly Eq.(1) is transformed into a first order differential

equation as {s} [ {S} { } (2)
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The homogeneous solution of Eq.(2) consists of complex-valued eigenvalues A ; and complex-valued modal

where

vectors W. If w ; is the natural frequency of the structure including the caisson-soil foundation system and
B ;is the damping ratio which includes the structural damping and the radiation damping through the caisson-

soil foundation system, the complex eigenvalues are given as
. 2
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where i denotes the unit imaginary number. Now using the complex eigenvalues and complex modal vectors,

Eq.(2) can be rewritten as
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Random response analysis

where

The dynamic analysis for spatially varying seismic inputs can be performed in time domain or in frequency
domain. For the time-domain approach, input acceleration at each support point consists of a complete time-
history and often the results vary significantly when different acceleration records are chosen as inputs. On
the other hand, the frequency-domain approach uses a statistical value of ground acceleration at the support
points, expressed using power spectral density functions which give the amplitudes and frequency
components of ground motions for a given intensity. The main advantage of this method is that the response
values can be taken as representative from a statistical viewpoint and this approach is used in this paper.

Now applying the Fourier Transform to both sides of Eq.(4) and rearranging, the generalized response in the
frequency-domain is obtained as
(o)} = [6)] 7 {7 0) ©®

where
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Now if a statistical value of seismic motion such as the power spectral density function (PSDF) of ground
acceleration [SE : (o )]at each support point is given, the PSDF of response [Sy (o )] can be obtained as
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in which * denotes the complex conjugate matrix. Now using the Wiener-Khintchine relationship between
the autocorrelation function and PSDF, the covariance matrix of the response can be obtained as
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From these results, the rms response dispacements of superstructure are determined as
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and the rms response member forces of each element can be obtained using the element stiffness matrix
[K, ]and the corresponding PSDF of displacement response [See (0 )] as follows
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The power spectral density function (PSDF) of ground motion including spatial variability effects

The spatial variation of ground motion at support points of multi-span structures is caused by various factors.
A detailed discussion on this topic is presented by Kiureghian and Neuenhofer (1992). The main causes are:
a) wave passage effect: due to the difference in arrival times of the seismic waves at different support points,
b) incoherence effect: due to the numerous reflections and refractions of waves in the soil medium and the
signals from the sourse superimposing differently at each support, and c) local effect: due to the local site
conditions which influence the wave propogation in the bedrock to the foundation. The PSDF of ground
accelerations including the spatial variability of ground motions can be expressed as
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x,, X, are coordinates of the reference points, C, is the phase velocity of seismic motion, w , 4, are the

filter parameters (characteristic ground frequency and characteristic ground damping ratio respectively) of
the well-known Kanai-Tajimi type, o, is the rms value of ground acceleration, S, is the intensity of white

noise at a support, w,, h.are the filter parameters (frequency parameter and damping parameter

respectively) of a second filter, introduced to overcome the limitations of Kanai-Tajimi type filter occurring
in the region of low-frequencies. On substituting Eq.(10) into Eq.(6) and carrying out random response
analysis as explained before, the rms displacements and section forces of the structure can be determined and
the effects of spatial variation of ground motion can be quantitatively expressed.



NUMERICAL RESULTS AND DISCUSSIONS

A numerical computation is carried out for the high-elevated four-span continuous bridge structure shown in
Fig.1. The structure is idealized by finite element method into 44 nodes and 43 elements. The total length of
the bridge is 480m with each span being 120m. The height of abutment piers is 15m where as the main piers
are 40m high. Out of three translational degrees of freedom and three rotational degrees of freedom at each
nodal point, two translational (one vertical and one horizontal) and one rotational degrees of freedom are
considered for in-plane motion whereas one translational (one horizontal in the transverse direction) and two
rotational degrees of freedom are considered for out-of-plane motion. The equation of motion for the
superstructure (deck and piers) is formulated with predominant vibration modes which correspond to natural
frequencies of less than 30 rad/s. The structural damping ratio of structure subsystem is assumed to be 2%.
The foundation is made of caisson footing, embedded 20m (18m for abutment piers) in the surface layer of
stratum on a firm substratum as shown in Fig.2. The equation of motion for the footing-soil foundation is
obtained using frequency-independent impedance functions corresponding to the soil condition in which an
uniform layer overlies on a firm half-space substratum. The equation of motion for the total system is
obtained by the substructure method. The earthquake response of this structure is then determined using the
frequency-domain random-vibration approach and complex eigenvalue analysis.

The shear wave velocity in the firm substratum J/, is taken as 300m/s and the ratio of shear wave velocity in
the overlying layer to that in the firm substratum is assumed as, V', / V,,=0.3 for the analysis since significant
soil-structure interaction effects are found to occur at these values. Tables 1 and 2 show the values of
natural frequencies and damping ratios of the total system for upto Sth vibration mode obtained by complex
eigenvalue analysis for free-vibrations of in-plane and out-of-plane cases respectively. As the natural
frequencies of these two cases are well-separated, they can be considered independently for the analysis.

The PSDF of Eq.(10) is used as the seismic wave input incorporating the spatial variability effects. The
assumed parameters of this equation are: ® e = 15rad/s, o ;=16 rad/s, h,=h, =06, indicating relatively

firm soil condition and rms ground acceleration o i, =100 gal corresponding to a severe earthquake situation.

Table 1. Natural frequencies & damping ratios (in-plane vibration)

Vibration mode Ist 2nd 3rd 4th 5th 6th 7th 8th 9th
Natural frequency (rad/s) | 3.281 3.817 4914 5.055 6.479 13.06 13.19 13.69 25.34
Damping ratio (%) 2.01 2.00 9.18 2.17 2.00 29.21 29.39 28.03 28.63

Table 2. Natural frequencies & damping ratios (out-of-plane vibration)

Vibration mode 1st 2nd 3rd 4th 5th 6th 7th 8th 9th
Natural frequency (rad/s) | 4.980 6.490 9.383 10.86 10.92 11.05 17.05 20.60 20.75
Damping ratio (%) 3.67 3.19 2.87 38.60 38.32 37.78 2.38 3.12 46.06

rms displacement responses:

In-plane vibration: Figures 3 and 4 show the rms displacements of some of the typical nodes of the structure
in the vertical and horizontal (longitudinal) directions against phase velocity of a seismic wave, with the
seismic-induced motion of each support being along the bridge axis. The variations in the vertical
displacements are generally smaller whereas the horizontal displaments increase with the increase in the phase
velocity of seismic wave and approach a constant value. This is due to the fact that when the phase velocity is
higher, all the supports are subjected to mostly uniform motion because the seismic wave may be considered
to arrive at all support points simultaneously. Also the vertical displacements are larger than horizontal
displacements for deck nodes and viceversa for pier nodes (results for pier nodes are not shown) as expected.

Out-of-plane vibration: Figures 5 and 6 show the rms displacements of typical nodes of deck, and pier in the
horizontal (transverse) direction, plotted against the phase velocity of the seismic wave, with the seismic-



induced motion of each support being in a direction transverse to the bridge axis. The response values
increase with the increase in phase velocity and approach a steady value. The responses for both deck and
pier nodes are several times larger than their equivalent values for in-plane vibration indicating that spatial

variation of seismic wave is particularly important for out-of-plane vibrations.
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Fig.6 Transverse displacements of pier

Fig.5 Transverse displacements of deck (out-of-plane)
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Section force responses:

In-plane vibration: Figures 7 and 8 show the shear force and bending moment respectively at typical nodes of
deck plotted against the phase velocity of seismic wave. Figures 9 and 10 show the correponding section
forces at typical nodes of piers. The shear forces in the deck are generally higher (except at node 10)
whereas the shear forces at nodes 26 and 27 in the piers are higher for lower values of phase velocity and are
reduced with increasing phase velocity. When the phase velocity is lower, the support are subjected to
nonuniform motion thereby causing larger shearing forces in the deck and in those nodes in the pier which
are located near the center of the structure. For both deck and piers, the bending moments at different nodes
show different variation patterns with increase in phase velocity and approach a constant value. This kind of
complicated response characteristics indicate the presence of strong influence from second and higher
vibration modes of the system.

Out-of-plane vibration: Figures 11 and 12 show the shear force and bending moment respectively at typical
nodes of the deck plotted against the phase velocity of seismic wave. Figures 13 and 14 show the
correponding section forces at typical nodes of piers. The shear forces at the nodes for deck as well as for
piers decrease with increasing phase velocity and approach a steady value for the same reason mentioned
above. Bending moments show different patterns for different nodes indicating the presence of higher order
mode effects. Also, compared to the results of in-plane vibration, the section forces are several times higher.
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CONCLUSIONS

The dynamic response analysis of a multi-span high-elevated continuous bridge including footing-soil
foundation system, subjected to a spatially varying ground motion, is carried out using frequency-domain
random vibration aproach and complex eigenvalue analysis. The main results are summerized as follows:

1. As the multi-span bridge including foundation system has longer natural periods, several vibration
modes, starting from the first and lowest, contribute significantly to the dynamic response in terms of
displacements and section forces of the structure. It is extremely important to determine accurately
these vibration mode shapes and their natural frequencies.

2. The rms displacements of deck as well as pier are slightly influenced by the spatial variation of seismic
wave at lower phase velocities. The response values generally increase with increasing phase velocity
and approach a steady value when the phase velocity reaches around 3000m/s. When the phase velocity
is equal or higher than this value, the supports are subjected to uniform motions.

3. The effects of nonuniform vibration of supports, due to a phase difference of input seismic wave, are
especially important for sectional forces (namely, axial forces, shear forces, bending moments and
torsional moments) of structural nodes, for both in-plane and out-of-plane vibrations. The results show
that the sectional forces at certain nodes of the bridge, considering the phase lag of seismic wave, may
be upto 2 to 3 times larger than their corresponding values when the seismic wave arrives at all supports
at the same instant. Therefore careful considerations must be given not only for the structural
characteristics but also the phase lag of the seismic wave.

4. The rms displacements as well as section forces for the case of out-of-plane vibrations are several times
higher relative to their corresponding values for the case of in-plane vibrations. Therefore this research
shows that the spatial variability of seismic wave is particularly important for out-of-plane vibrations of
multi-span bridge structures.
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