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ABSTRACT

This paper presents an analytical method to estimate the amplitude distribution of the amplitude of incident
waves that corresponds to the cross power spectral density function defined on the ground surface. The
analysis is made for a simplified earthquake model which is composed of the superposition of plane stochastic
SH-waves traveling with varying angles. The procedure developed in this paper reverses the process studied
by Kausel and Pais (1987) in which cross-correlation on the ground surface was computed by supposing a
priori the sectorial distribution of the incident SH-waves. On the basis of the numerical results, an
approximate but simple expression for the amplitude distribution function of the incident waves was presented.
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INTRODUCTION

In the seismic response analyses of structures, it has been usually assumed that every point of foundation is
subjected to the same ground motions during earthquakes. Due to the dense observation of the ground
motions, however, the assumption of the same amplitude and phase of earthquake ground motion is not valid
any more. It has been revealed also that the spatial variation of ground motions can not be expressed by the
simple assumption of obliquely incident seismic waves from one direction. These facts indicate that the
seismic waves impinge to the ground surface from various directions and with different amplitudes.

Some empirical models of the spatial variation of the ground motions at the ground surface have been
proposed on the basis of the data provided by arrays of seismometers (e.g., Abrahamson and Bolt, 1985; Loh,
1985; Harichandran and Vanmarcke, 1986). Some other coherence models expressing the variability of the
ground motions have been suggested by Matsushima (1977), Hoshiya and Ishii (1983), Luco and Wong
(1986) and others based on different approaches. These models have been used to study the effects of
spatially varying ground motions on the seismic response of structures with foundations supported on the soil
surface (e.g., Matsushima, 1977; Luco and Wong, 1986; Luco and Mita, 1987; Harichandran, 1987; Veletsos



and Prasad, 1988). The stochastic property of motions in the soil is of important for investigation of the
seismic response of structures with embedded foundations or underground facilities such as buried pipelines.
Kausel and Pais (1987) presented a method to determine the cross correlation function between the surface
and a point at a depth in the soil on the basis of the knowledge of the cross correlation spectra on the surface.
Additionally, they studied numerically the temporal and spatial variation of the surface ground motions
assuming a priori the sectorial distribution of incident SH-waves. The stochastic responses of embedded
foundations for varied patterns of SH-wave incidence have been discussed by Pais and Kausel (1990).

The objective of this paper is to estimate analytically the amplitude distribution of incoming waves with
respect to the angle of incidence that corresponds to an empirical model of spatial variation of the ground
motions defined at the soil surface. The analysis is made for a simplified earthquake model which is
composed of the superposition of plane stochastic SH-waves traveling with varying angles. The procedure
developed in this paper reverses the process presented by Kausel and Pais (1987) in which cross-correlation
on the ground surface was computed by supposing a priori the sectorial distribution of the incident SH-waves.
The results obtained in this study may be used for the seismic response analyses of embedded foundations and
underground facilities subjected to spatially varying ground motions.

STATEMENT OF PROBLEM

The soil model considered in this study is illustrated in Fig. 1 which consists of layered soil with irregularly
shaped interfaces. The ground motions in the top layer may be considered to be composed of waves traveling
from various directions and with different amplitudes. This might be one of the factors that causes the
incoherent motions on the ground surface. We consider in this study, for simplicity, the ground motions due
to incidence of plane SH-waves propagating with varying angles. Thus, the free-field motions considered in
this paper are composed of anti-plane motions which is perpendicular to the x-z plane shown in Fig. 1.

Most of the models of the spatial variation have been proposed in the form of cross power spectral density
function and a model presented by Harichandran and Vanmarcke (1986) is used in this paper:

S(r,w) =T(r,w)exp(-iw 4 ;d‘ )8 (w), (1)

in which r is the distance between the two points, » =|r, —r,| in which r, and r, are position vectors on the
surface; w is the circular frequency of motion, d, and d, are the components of r; and r, in the direction of
propagation of the wave front, respectively; and c is the apparent horizontal velocity observed on the surface,
which can be expressed with elastic wave velocity ¥, and an incident angle o as given by

c=V,/cosa. v3)
The right hand side of equation (1) consists of three terms. The third term S, (w) is the power spectral

density function which is assumed to be invariant within a local area, the second represents the wave passage
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Fig. 1 Description of Model and Coordinate System.



effect of the ground motion and the third term I'(7,®) represents a coherence depending on the distance r
between the two points and circular frequency w. Following Veletsos and Prasad (1989), a coherence
presented by Luco and Wong (1986) is used in this study which is given as follows

I'(r,w)= expli——(l;)—r) :|, 3)

in which y is a dimensionless index of incoherence. Under the conditions above described, the cross power
spectral density functions at the two points on the x-axis shown in Fig. 1 can be expressed as follows:

S(xl,xz,m)=exp{—(m) }exp[—i‘-"-",%“‘ﬁ(:a—m]sgu»). @)
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Thus, the problem in this paper is to determine an amplitude distribution function of incoming waves with
respect to the angle of incidence that corresponds to the cross power spectral density function defined in
equation (4).

ANALYSIS OF AMPLITUDE DISTRIBUTION FUNCTION

Setting the coordinate system x, z as shown in Fig. 1, the free-field ground motion in the elastic top layer due
to the incidence of SH-waves traveling with angle of incidence 8 and the amplitude 4(w,8)/2 can be

expressed as follows:
1 e wsin 6 wcosd | ;
t,0)=—| A(w,0 z |exp| ~i x |¢dw, 5
a0 A )°°{ 7 ) p( 7 J ®
in which ¥, is the shear wave velocity in the homogeneous top layer.
Assuming that the free-field motion is composed of the superposition of multi-directional waves, the total
motions can be expressed as in the form of

u(x,z,t) = ﬁ/(x,z,t,e)de - —I-—JWU(x,z,w)e"""dw, (6)
0 2w o=
in which
U(x,z,0) = _[:A(w, 0) cos{w s;sn 6 z) exp(—i o <;:s0 x)de‘ N

Supposing that the motion expressed by equation (6) is stochastic with random value of 4(w,0), the cross
power spectral of two processes u(x;,z,) and u(x,,z,,?) at the points (x,,z) and (x,,2,) can be expressed as
follows:

82 (5%, 5,2, 0) = E[U"(%,2,0)U (%, 2, 0)] , @®)
in which the asterisk denotes complex conjugate and E[ ] is the expectation operator.
Substituting from equation (7) into (8) leads to

812(%,%,,2,2,0) = J:' f: Sv(B’,e",w)CO{ws;,?e 21)008(“;1 L zz)

5

exp[i g—(x1 cos®’ - x, cose")]de'de" , )
in which
5,(6,8",0) = E[4'(0,6) A(w,8")]. (10)
Following the assumptions employed by Kausel and Pais (1987), we express S,(6,8”,®) as in the form of
5.(6',8",0) = S, (w)g(0")g(8") f(|0'-8")), (1)

in which S, (w) is the power spectral density function defined on the soil surface; g(6) is a wave amplitude
distribution function with respect to 6; and f (]6’—6"[) is the cross-correlation function for the wave
component. Further simplification is made by introducing an assumption that the waves traveling from the



distinct directions 06',0” are uncorrelated, and it leads to,

f(6'-8") = 5(8'-8"), (12)
in which 8() is a Dirac-delta function (Kausel and Pais, 1987). Substitution from equation (11) with (12)
into (9) and integrating with respect to 6’ leads to

S, (%,%,,2,,2,,m) =Sg(m)J:gz(B)ms(g);nﬂzl)cos{m?;n9zz)exp[ mt;;)sﬂ(xl —xz)}dﬂ (13)

The function g*(8) may be interpreted as the intensity distribution function with respect to 8 of the incident
waves. In the case that z, =z, = 0 and x, = x, in equation (13), S,,(w) must be equal to the power spectral
density function at the soil surface S, (w). Hence, £%(0) must satisfy

J:gz(ﬂ)de = 1. (14)

Letting z, = z, = 0 in equation (13), then it gives the cross power spectral density function over two points on
the soil surface and equating the equations (4) and (13) yields

j”g’(e) ox ( mcy;ﬁ" x)dﬂ = exp[-—[y—(;lM) }exp(_i ‘”C‘;‘Jsa ;\)’ | (15)

s 5 s

in which A = x, - x; and g%(6) is the unknown function to be determined. It is quite natural to express g*(0)
in the form of Fourier cosine series:

g(0) = Zdn cosnf, (16)

in which d, are the Fourier coefficients. From equation (14), it may immediately be shown d, =1/ .
Substituting from equation (16) into (15) and making use of a well known formula (Gradshteyn and Ryzhik,
1980)

J:re"m’“ cosnbdd = ni"J (z), ' 17
equation (15) can be written in the form
(~iy'd,J,(n) = exp(-y"n’) exp(-imcosar), (18)

Nl

in which J,( ) is Bessel function of the first kind and order n, and 1 = wA /¥, is the dimensionless frequency.
Noting that d, is real numbers, we obtain following equations:

2(—1>"d2,,J2n(n) =iexp(—vzn2)cosmcosa), (19)
2(—1)"4M1Jz,,+1<n) - ~exp(-y'1P)sin(ncosar). 20)

In analyzing the unknown coefficients d,, and 4,,,,, it is convenient to expand the right hand sides of
equations (19) and (20) in terms of power series of m as follows:

exp(-y*n’) cos(n cosar) = }; Gam™,  exp(-yn')sin(ncosa) = 2 Cona W™, 1)
in which the coefficients C,, and C,,,, are given in the form of finite series: )
(n-k) cos’ n (n-k) COSZI“I
G S 0 NS e . 22)
(n- k)|(2k)' (n-EN2k +1)!
Substituting from equation (21) mto (19) and (20) yields
2, Vol = Zczm : (23)
( 1) dZn+1J2n+1(Tl) ZCMH 2n+1. (24)

Equations (23) and (24) are having the forms of Neumann series and the unknown coefficients d,, and d,,,,
may be shown to be given as follows (Watson, 1966)



d, = lCo = L (25a)
T T
" —-r =1
d,, =(-D" 2?"2 2%n-r) (_2_27';____)_6'2("_’)’ n=12.-- (25b)
220+ 1~ g (2R-7)!
d2n+l = (_1) T 222( ) ](7—)—-cz(n_r)+]’ n= 17 2" "c. (25C)

Thus, the closed form solutions were obtained for equations (23) and (24). First several terms of d,, and
d,,, are shown in the Appendix. Once the coefficients d,, and d,,,, are obtained, the absolute value of the
wave amplitude function may be evaluated by following equation:

1g(0)| = /idn cosnB. (26)

ANALYSIS OF COHERENCE

As the data on the coherence in the vertical direction of soil is very scarce, it is interesting to predict the
coherence based on the earthquake model considered in this study. Nevertheless Kausel and Pais (1987) has
presented the complete formulation for the analysis, a similar study is attempted here by use of a different
approach to obtain the closed form solution. The coherence over two points in the soil may be evaluated by
following equation:
|S12 (A\,z,,2,, (D)!2

S,(x,,2,,0)8,(x,,2,,0)’
in which A is the horizontal distance, A = x, —x;; S, is the cross spectral density function defined in equation
(13); and S, and S, are the power spectral density functions at the points (x,,z,) and (x,,z,), respectively,
which may be given as follows by substituting z, = z, and x, = x;, or vice versa, into equation (13):

5,(x,,2,) = 5, () [ " (8) cos (“’;“Bz)de, i=12. (28)

5

I,(\z,z,,0) = 27

Substituting from equations (13) and (28) together with (16) into (27) yields
Y122 ()\"zl E] 22, (.l))

I,(hz,z,,0) = , (29)
P (3,001, (5, 0)
in which
-, (" in 0 wsin wcoso :
Yo' (M2,2,,@) = > ”J.o cosnecos(ms;sn zl)co{ 7 zz)exp(i 7 k)de , (30)
and
Z,0) = Zd cosn()cosz(msme )de, i=12. 31)

The integration with respect to 8 of equations (30) and (31) may be shown to be expressed in the closed
forms:

Vi O ,2,0) = M{Ju(%) cos2na, +J, (“’TD’)cosznaz}

2

2 2n+1{ Y I)Sm(zn +Doy + J2n+l( (32)

d Jzn(%)
4 Z

wb, )sin(2n + l)az}

8

and

, i=12 (33)

in which



D=y(z+5)+¥, D=y(z-z)+¥ (34)

and a, and a, are angles to be determined from following equations:

tanoy, = , tana, = . (3%5)
z+2 z -2z
For the special case that A = z, = 0 in equation (30), it reduces to
2
= [0
lez(orzhoa (D) = ng dZn‘IZn[%) . (36)

Substituting from equations (36) and (33) into (29) yields the coherence between a point on the soil surface
and a point at depth 2, right below the surface point, and it may be shown to be expressed in a simple form as,

- Wz,
T Jl—=1.
’;‘én Zn( K )
Yoshida and Mita (1988) studied the stochastic response of embedded foundations under an assumption that

the motions at two points are random laterally but coherent in depth. The result of equation (37) suggests,
however, that the assumption of perfect coherence in the vertical direction is not valid.

I‘lz(oazno’w) = (37)

METHOD OF NUMERICAL CALCULATION

The amplitude distribution function is expressed in the form of infinite series as shown in equation (26). In
the numerical calculation of the series, there arises a difficulty that the series tends to diverge for large value
of n. The number of terms must be truncated at a certain value M, and it is reasonable to decide the number
so as to minimize the squares of the difference defined as follows:

e = [ [L0\ @) - 574, 0,0,0)] do, (38)
in which £, is the maximum frequency under consideration: I'(A, ) is the coherence given in advance: and

- 2 M o) | ¥ n @A

Y12 (A,0,0,0) = W’IZ (-1) dzm’z;{;{) -m"}-;(—l) Li2n+]‘]2n+l(_f/;—)[! (39)

which is given from equation (32) by letting z, =z, =0. Fig. 2 shows the comparison between a given
coherence and a computed result with A/ =3 that makes equation (38) minimum. It may be seen from Fig . 2
that the coherence calculated based on the above described criterion gives the satisfactory result.

NUMERICAL RESULTS OF INTENSITY DISTRIBUTION FUNCTION

The intensity distribution functions, which is defined as the squares of the amplitude function shown in
equation (26), were calculated for different values of the index of incoherence y, which is considered to be
between zero to 0.5 (Veletsos and Prasad, 1989), and for a. = 80° and 90°. The results which are normalized
by the corresponding peak value are shown in Fig. 3(a) and (b). It is noticed from the results that with
decrease of the index y the intensity distribution tends to concentrate at a specific angle a.. It is also noted
that the distribution function has a very simple form. An empirical expression for the distribution function
may be suggested as given by
2 -(a-0)*/a®

£~ Jra[o((x-a)/a) + @(ala)] ’ (40)
in which a = 2.1y and ®( ) represents the error function. The coefficient of the exponential term was decided
so as to satisfy equation (14). It may be shown that as y approaches zero g7(8) goes to 8(a.-0). Fig. 4
shows the comparison of results computed by equation (16) with results evaluated by use of the proposed
empirical equation. The excellent agreement between two results may be noticed. In consequence, equation
(40) may be suggested to use for estimation of the amplitude distribution function valid for 70°< o < 90°.




Once the function g*() is obtained, the coherence between two points may be evaluated by substituting from

equations (13) and (28) into (27). Thus calculated results of coherence over two points on the soil surface
are compared in Fig. 5 with the coherence I'(A,®) given in equation (3). It is noticed from Fig. 5 that both
results show excellent agreement.
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Fig. 2 Comparison of Intensity Distribution Function Computed by Eq. (16) with Empirical Result.
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CONCLUSIONS

The closed form solution for estimation of the amplitude distribution of incoming waves with respect to the
angle of incidence that corresponds to the empirical model of spatial variation of the ground motions defined
at the soil surface was presented for a simplified earthquake model which is composed of the superposition of



plane stochastic SH-waves traveling with varying angles. In the numerical study, the amplitude distribution
was calculated for different values of the index of incoherence. The computed results show that with
decrease of an index of incoherency ¥, the distribution of incident waves tends to concentrate around a

specific angle. On the basis of the numerical results, an approximate but simple expression for estimation of
the intensity distribution function of the incident waves was presented.

APPENDIX

This appendix gives first several terms of the coefficients d, for obtaining the amplitude distribution function.
The coefficient C, was given by equation (22) and G =1.

1 2
d0=;Co, dl -;Cl’
2 6
d, =-24C,+C,), d,--2@c, +C),
T T
d, =-2—(19zc +16C, +C,), d, -19(3840 +24C, +C),
--—(2304oc +1152C, +36C, +C,), d, _-~(4sosoc +1920C, +48C, +C)),

d, = 2 (5160960C, +184320C, +3840C, +64C, +C,).
Tt
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