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SOIL-STRUCTURE INTERACTION SYSTEMS ON THE BASE OF THE GROUND
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ABSTRACT
It is well known that structural constructions are interacted with their surrounding soil ground under dynamic
excitations. The interaction phenomena are, however, so complicated as to obtain the analytical manner, especially
in the time domain. The present study is concerned to introduce the practical method for describing the dynamic
properties on the base of the causal conditions along the time and frequency axes.
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INTRODUCTION

An infinite number of researches have been vigorously carried out for the dynamic interaction problems between
structural constructions and their underlaying soil ground. The interacted systems are usually divided into the
tentative subset composed only of upper-structures with base foundations and the one of a soil ground concaved
with foundation-shaped cavities. According to the numerical analysis of the frequency compliance functions or
the impedance ones defined on the interface between foundations and a soil ground, the first stage of the
analysis is set on the spectral characteristics and the response processes are left below the second. Moreover, it
is an essential condition for the response analysis to be consistent with the physical causality in the time and
frequency domain.

In the present investigation, the ground impedance functions are simulated on the series expansions with causal
representations and transformed into a chain of impulses along the time axis. The total equations of motion are
formulated with the displacement vector and its delayed ones of the upper structures and the base foundations.
The modal components are described in practice through the approximate method with little time behinds or
the reduced procedure selecting the major modes on the complex plane. The numerical analysis is carried out in
the interacted responses along the frequency and time directions for some system properties.

FORMULATION OF THE PROBLEM
The soil-structure systems are modeled on the composition of an upper-structure with concentrated masses and
base foundations in tight contact with the surface of the elastic soil ground spread over a half space, as shown in



Fig.1. The equations of motion are written by the

displacement vector x(t) of the upper-structure and their
sustained base foundations in the following sway-

rocking type,
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in which A,, A, and A, are the matrices of mass,

damping and stiffness of upper and base structures, e
gives the modified unit vector with the exception of null

values for the rotational components, x(t) is the lateral

displacement of the excited soil ground, f(t) shows the
external force vector associated with the soil-structure
interaction and the upper right script (i) corresponds to
the derivative in respect of time t. According to the Fig.1 Configuration of soil-structure
lateral excitations in the surrounding ground, the interaction systems.
external forces are composed of a shearing force Pg(t)
and a bending moment M(t) around the horizontal axis passing through the base foundation, which are written
in the convolution integrals along the time direction, constituent of the relative displacement vector x,(t) of the
foundation and the impedance functions Dy(t) specified on the interface between the foundation and its underlaid
soil ground,
£(t) = Dy(t) *x,(t) @
The impedance functions or the compliance ones are usually obtained in the frequency domain and entertained
numerically for the soil-foundation systems without upper-structures. To describe the impedance functions in
the analytical manner, their digital data are simulated on the next series expansions through the least squares
method within the frequency range spread enough for analyzing the interacted responses,
M N
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m=0n=0
in which any term is arranged to agree with the causality when the corresponding coefficient matrix (D, is
given in the real domain. The sampling time T, is limited positive and related with the cutoff frequency w; to
guard the spectral functions from the aliasing confusion. When the series equation (3) is available in the entire
frequency range, the simulated impedance functions are transformed into a chain of impulses and its derivatives
behindhand with their responses along the forward time direction, namely the impulsive responses are divided
into the segments concentrated at the discrete instants,

D) =YY (P, 3™ (t-1,) )

m=0n=0
The impulse chains are honed sharp in the case that the series expansion of the impedances are still effective in
the higher frequency range exceeding the cutoff limit for the simulation procedure. The extended arrangement
contributes the intensive distributions toward the feedback responses circulating around the convolution integrals
in the time domain. The equations of the interacted motions are rewritten in the following form by the

displacement vector and its delayed ones,
M
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in which the impedance coefficient matrix D, is empty except for the subset (D, associated with the responses
X,(t) of the base foundation. One of the upper bounds is settled with M=2 for the series expansions because the
differentiation over two times is physically meaningless for the displacement components along the time axis.
The other upper bound is restricted with N=1 due to the response components circulating not so behind the
exciting motions, as far as the base foundation has the normal configuration.

MODAL ANALYSIS OF INTERACTION SYSTEMS
For the analysis of the response processes under earthquake excitations, wind turbulences or artificial controlling
forces along the time direction, it is convenient to separate the dynamic systems into their modal elements. The
strict separation is, however, difficult when the delayed components are included inside the motions as explained
in the equation (5). In accordance, the following two types of practical method are recommended for the modal
analysis of the soil-structure interaction systems.
(1) Approximate procedure on little time differences :
When the delayed duration 7, is infinitesimal, the function x(t) and its derivatives at t are generally related to those
at t-1, through the central difference method,

Tn 2{x(t) —x(t-1, )}(2) -1, {x(t) +x(t-1, )}(D +2{x(t)-x(t-1,)} = 0(z,%) (6)
2

By combining the difference equation (6) with the equation (5) of the interacted motions, the next form is
approximately obtained in respect to the unknown vector {(t) enlarged with the delayed components and without
the positive implication of the time difference t,, similar to that of the structural systems fixed at the base

foundation,

M
> UL™(1) = 1P (1) +0(7,%) %
m=0
where the coefficient matrices U, are unsymmetric and unsuccessful in making the orthogonal conditions for
the complex mode vectors. In spite of the disadvantage,the differential equation (7) has the capacity for changing
into the state form at a single instant as far as the delayed period is short enough. The characteristic values and
the mode vectors are approximately obtained on the complex plane through the ordinary procedure.

(2) Sorting procedure with major modes:

The vector equation (5) of motion is directly exchanged for the following state formula under single derivatives,

N
Z{Bny(t -1,)+CyP(t -1, )} = gxP(t) (8)

Because of the interacted propel;;ioes with the continuous ground, the whole number of the characteristic values
are counted more than the total of the response components in the upper structure and the base foundation.
When selecting the characteristic values and the mode vectors coincident with the dimension size of the state
equation, it is acceptable that the state vector and its modified one traveling T, behind are composed in the
following forms with the matrix @ having the mode vectors in the row,

y(t) = @q(t), y(t-r,)= PEq(t) ©9)
in which E corresponds to the diagonal matrix containing the exponential functions exp(-A;t,) with the
characteristic values A;, and q(t) is the unknown vector with the time parameter t. Under the preparation, the
state equation (8) is modally divided into the next formation,

q®(t) - Aq(t) = oxP(t) (10)
in which A is the spectral matrix diagonalized with the characteristic values. The vector & contributes to
participating the excitations among the modal equations.
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NUMERICAL ANALYSIS
For regulating the numerical results, the next dimensionless parameters are adopted with the over script (7),
i, =_£n_i.2_, k; =_l_(.i_’ < =L, i =r_0, h, =ﬁ’ E=_}1, B=R,
pbd nd pdwg d d d d
— mo_ "o i =_¢h _ Bo . t 1
kH =kgmwi-, R = R (DL, X-=L, =, O=-— t=—, = — H—
= " ™ ubd®” T ug \ Ug Og Bog” ° dy\p’

in which m,, c;, k; and h; are respectively the concentrated mass, the damping coefficient, the stiffness coefficient
and the height at the i-th floor level of the upper-structure, 1 is the radius of moment inertia about the lateral
axis passing the thin and rectangular foundation (2b X 2d), and p, |, v are the mass density, the shearing
rigidity and the Poisson's ratio of the soil ground. The displacement components x;, ¢ correspond to the lateral
translation at the i-th floor and the rotation at the foundation, relative to the ground motions. The standard
measures Mg, Ug, h are found in the frequency, the ground displacement and the story height of upper-structures.
The scales of time and frequency parameters are adjusted with the factor P to the infinitesimal delay period.
Ground impedances: The simulated solutions are shown in Fig.2 for the lateral and rotational impedance functions
on the interface between a rectangular foundation and an elastic half ground, which quite agree with the analytical
data within the utilizable frequency range. When the shape of the foundation is confined in square (b=d), the
delayed components almost disappear in the lateral translation, as exhibited on Table 1.

Characteristic properties: The characteristic values and the mode vectors are given on Table 2 for the soil-
structure systems with one-story upper constructions and square foundations, plotted on the second quadrant of
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Fig.2 Dimensionless impedance functions : b/d=1,2,4, v=0.25.

Table 1 Dimensionless factors expanded in the impedance functions

(a) Horizontal translation (b) Rotation

b/d=1 | b/d=2 | bld=4 bld=1 | b/d=2 | b/d=4
ki | 40700 | 3.4411 | 53709 kb | 8.1175 | 6.9963 | 6.2494
kB o. 0.8558 | -0.5212 Ky [11.7199 | 55786 | 2.2387
k| 2.2007 | 3.2500 | 3.0086 Ky [13.2422 | 6.3156 | 2.7362
K | O 0.5519 | -0.7208 Ky | 67113 | 2.9617 | 0.9710
KL | 0.3688 |-0.0003 | -0.0005 ko | 0.0003 |-0.0004 | -0.0007
Ko 0.0721 | -0.3335 K | 26187 | 1.1881 | 0.4627
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the complex plane (their conjugate values are also on the third quadrant) and missed on the first and the fourth
quadrants which establishes the dynamic stability of the interaction systems. The plots of the characteristics are
counted to four for the fundamental systems, in correspondence with two sets of the lateral translation at each
floor level, and two sets of the rotation and its delayed one at the foundation.

Frequency responses: The spectral properties are shown in Fig. 3, which are the displacement amplitudes of
three-story structures under the ground excitations. They are dominant only at the natural frequencies of the
lateral translation on the upper floor levels, while another dominance is also distinguished in the higher frequency
range on the base foundation due to the rotating motions. When the inner damping is perfectly left out of the
upper structures, the amplified dominance is violent on the natural frequencies especially within the lower
range regardless of the radiation damping for the far field of the soil ground, and has the tendency to be put
down by adding a bit of inner viscosity.

Transient responses: The response processes are given in Figs. 4 and 5 for the interaction systems mentioned
above when the unit displacement is initially forced at the top floor. The foundation motions are found diminishing
more rapidly than those on the upper floors, especially in respect of the velocity components. It is comparable
with the spectral characteristics that the high frequency notches are added to the harmonic responses which
decrease soon when the inner damping is included in the upper structures.

CONCLUDING REMARKS

For the dynamic interaction systems between structural constructions and their surrounding soil ground, the
" equations of motion are formulated with the displacement vector and its delayed ones through the ground
impedance functions simulated in the present proposal on the base of the physical causality. It is no simple task
to obtain the characteristic values and their associate mode vectors in the differential equations with the
behindhand components. The major sets of the characteristics are, however, countable in the finite numbers so
that some experiments are put into practice in the modal separation under the permissible restriction. By referring
to the numerical results, the complicated subject is well researched without the serious injury to the dynamic
interaction characteristics.
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Table 2 Complex eigen values and eigen vectors
(a) Approximate method : =5.0
<eigen values>
Real Imag. Real Imag. Real Imag. Real Imag.
-0.05304  0.61001 -0.26947 1.18364 -0.49754  2.09519 -1.33004 1.77509

<eigen vectors>
Amplitude Phase angle | Amplitude Phase angle | Amplitude Phase angle | Amplitude Phase angle

1.0 0. 1.0 0. 1.0 0. 1.0 0.
0.420 -0.072r 3.612 -0.777n 1.222 -0.926n 1.167 1.000%
0.224 0.042% 2.962 0.194n 2.659 -0.763n 4.787 -0.448n
0.245 -0.274x 4.964 -0.457n 5.057 0.066n 33.041 0.175n
(b) Reduced method
<eigen values>
Real Imag. Real Imag. Real Imag. Real Imag.

-0.05452  0.61011 -0.30932 1.21846 -0.42624 229953 | -1.18078 1.70872

<eigen vectors>
Amplitude Phase angle | Amplitude Phase angle | Amplitude Phase angle | Amplitude Phase angle

1.0 0. 1.0 0. 1.0 0. 1.0 0.
0.421 -0.070% 3.226 -0.843n 1.150 0.924~ 1.215 -0.9997
0.222 0.036n 2572 0.097x 3.432 -0.836x 4.098 -0.446m
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Fig.4 Transient responses of velocity under the initial conditions : Z;=1.
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Fig.5 Transient responses of displacement under the initial conditions : z,=1.



