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ABSTRACT

The paper deals with the dynamic analysis of the geometrical non-linear response of the concrete dam and
hydroelectric power station in interaction with the foundation soil, under the seismic conventional loads.

Structure has a complex response under external loading, both because of physical specifically behaviour
and the change of its geometric shape. Here is presented a model for non-cracked concrete using the theory
of plasticity, based on the strength theories and a model for cracked concrete using the theory of fracture
mechanics.

The dam and the power station have been modelled with concrete elements using the von Mises theory and
soil elements using Drucker - Prager theory.

The stresses and deformations were determined respecting the following hypothesis: - the gravity forces; -
the gravity forces together with the static and hydrodynamic pressure of the water; - the previous hypothesis
together with the seismic forces established respecting the Romanian standard for the seismic calculus. A
rule of variation of the seismic forces in keeping with the fifth mode shapes of the structure was recomputed
at each loading step and each iteration of the equilibrium.

It was established: - frequencies and modes shapes of structure; - stresses and maximal stresses; -
deformation shapes and maximal deflection.
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STRUCTURE OF AN OVERFALL-DAM, IN INTERACTION WITH FOUNDATION SOIL

The dam is located in the middle of Danube minor bed of river and assures regulation of water levels in
upstream, evacuation of ice and floats and together with the hydroelectric dam station and navigation locks
is very important in discharging of floods. This case is a gravity dam made of concrete, having a maximal
elevation of 60.60 m, a length of 441 m and is composed of 14 overflow fields, with 25 m openings,
separated through piers of 7 m gauge. Openings are equipped with plane gates with clasp of 25.00 x 14.86



m2, which can run between guide-ways. The niches have dimensions of 3.8 x 2.00 m and draw hydrostatic
pressure off. The hydrostatic pressure represents 27,000 KN/pier. The dam has an upstream rigid fixed
corbel, 5 m under the foundation footing. Transversal dam section is approximately triangle, with the
proportion between base and elevation almost equal to one, corresponding to geotechnical conditions from
location. Rocks of foundation in bed of river and shores belong to a crystalline, composed of paragnaises
with lateral passes to quartz varieties more or less shistuosities. Friction coefficients between concrete and
rock which have been accepted are around 0.5 - 0.6. To reduce uplifts, on foundation surface has been
realised a watertight diaphragm, soil logs and drainage galleries. The body of the dam is divided in 16 m
width blocks through constructions joints which are situated in overflow fields and are waterlighted with
plastic sealing bands.

APPLICATION OF F.EM. - FINITE ELEMENT METHOD IN DYNAMIC ANALYSIS

In stress state evaluation problem, inside the body of dam, F.E.M. has been applied owing to higher accuracy
possibility given by dynamic analysis, taking into account a large effects number and hypothesis regarding
both loading and material behaviour and interaction phenomenon. It has been established stress and strain
state inside the body of dam and foundation soil using a transient non-linear numerical analysis, step by step,
with F.E.M. - owing to the weight of the dam and the pressure of the water from the lake. In this purpose,
the whole ensemble dam - soil has been meshed in isoparametric, patrulater finite elements, with four
integration Gauss points, which reproduces a plane strain state around a point. The vertical and horizontal
reinforcements have been concentrated on the plane finite elements contours and connected with their nodes.
The reinforcements unidimensional TRUSS finite elements have unidimensional rigidity only. It have been
used 633 concrete finite elements and respectively 405 soil finite elements - fig.1. Hydroelectric power
station and dam have been modelled with elements in yielding von Mises theory, with hardening, and soil
with non-linear Drucker - Prager's theory. The stiffness matrix of the structure has been recalculated to each
loading step and respectively to each equilibrium iteration step.

Shape particularities, material types which have been used in different pours and border conditions have been
taken into account to the mesh discretization. Depending on the significant stresses values inside foundation
soil, it has been chosen, through trials, the mesh discretization limit inside depth of soil, to reproduce the
half-plane conditions and the final result of these was the mesh discretization density. Extension of analysed
area was 1.5 times greater than the elevation of the dam.

Taking into account that proportion between Young concrete and Young foundation modulus is not greater
than 50, condition of null displacement to soil mesh limit didn't produced any numerical error which could
affect solution. Both geometrical nonliniarities effects (displacements and great rotations with moderate
strains) and physical nonlimarities, in T.L. - Total Lagrangean formulation, have been considered. In
consequence, stresses and strains have been formulated using the II order Piola - Kirchhoff - PK2 stresses
tensor, and respectively the Green - Lagrange - GL strains tensor (Bathe and Ramaswamy, 1979).

The analysis has been realised using a specialised original ANSEF software, which offers important hardware
facilities in the WINDOWS version, having a double precision, 30,000 words common blank. This last one
creates a task which will occupy 3.5 Mb from the memory of a PC 486 - DX/33 MHz during the run time,
enough for a "step by step" non-linear analysis. The response of the system has been calculated using an
incremental static equilibrium equations solution with Newmark integration scheme. The equilibrium
equations from the displacements method has been solved taking into account the stiffness decreasing both
to each loading step during one step iterations (leremia, 1991).

GENERAL EQUATIONS GOVERNING THE DYNAMIC PHENOMENON

In calculation of seismic response of "dam - soil" structure, having "n" DOF, modal superposition method
has been applied, expressing static equilibrium equations through a "n" independent equations system where



dynamic characteristics corresponding to each vibration mode can be found. Knowing all these, dynamic
general equilibrium equations, expressed in modal co-ordinates (noncupled), becomes:

[M[Go}+[Cliao}+[K]imw} = {P}5, (1)
where: [M]=[o] [M]2]. [C]=[e][c]@); [K]=[e] [K]@]. {5} =[@}{n()}: {P} =[] [M]{1};

[M] - concentrated masses matrix; [C] - viscous damping; [K] - elastic stiffness matrix; {5(t)} - generalised
displacements vector; [®] - modal matrix constituted of eigen vectors corresponding to each eigenvalues, SS
- earthquake excitation at base. Masses and stiffness matrix are diagonal matrix, and damping matrix has
been expressed as a proportional damping, on Rayleigh type - [C] = a[M]+ B[K]. {P}is vector of modal
participation factor, characterising contribution of each vibration eigen mode to structure dynamic response.
Validation conditicn of this dynamic analysis was that mobilised mass represents over 90% from total mass.

When mesh discretization gauge has been established on analysis of eingenvalues spectra from different mesh
levels has been taken into account (leremia, 1993).

ELASTO-PLASTIC BEHAVIOUR MODELS OF MATERIALS
Elasto-plastic model which have been used for describing the concrete and reinforcement behaviour, uses
energetic breaking M. Huber criterion and respectively von Mises plasticity theory in concordance with

Prandtl's "stress - strain" technical characteristic diagram, with hardening (Owen and Hinton, 1980).

In the non-linear numerical analysis using the Finite Element Method, it will be defined the yielding criterion
at a "t" time moment (to a certain loading level), as an extended expression of the Coulomb condition.
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where, o, - mean stress; o, = 30 = EI‘ ; S - itensity of tangential stresses; S = (3sy8;)* =(-J,)* ; o, -

material yielding strength; o and k - are specific parameters of the material, Jo - the second invariant of
deviatoric stress tensor [T¢]= (s;), which characterises the shape of an infinitesimal element around a point.

J, = ~‘%[(0-1 —0, )* +(o, —0—3)2 +(o; - 0')2] - %(S“)(S“) )

For the evaluation of the dynamic response of the system structure - soil, considering the non-linear
properties of the soil, the Drucker - Prager criterion is obviously used. This criterion represents both an
extension of the crack theory (maximal shear stress) of Coulomb and an approximation of the Mohr -
Coulomb criterion; in this case, the yield condition of von Mises is completed with an additional member,
representing the influence of the spherical stress tensor.

The yield criterion at the moment "t" has the following form (Ieremia, 1994):
F=(3ac,+S)-0,=0 4)

where: g - is the normal octahedral stress; o, oy - are the material coefficients, depending on the soil
cohesion (c) and on the internal friction angle (0), as follows:

oy =3 (5,)X03)
o = 6¢c-cosf
© V3(3-sind)
o= 2sin@
V3(3-sin6)

(5)



The stiffness matrix for the post-elastic computation, depends on the deviatoric tensor.
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where K represents the bulk modulus and G is the shear modulus.
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The stress and deformation state was analysed with numerical Finite Element Method inside a concrete dam
in interaction with soil, under seismic conventional loads, in concordance with design spectra.

GEOMETRICAL NON LINEARITY WITH T.L. - TOTAL LAGRANGEAN FORMULATION

Incremental equilibrium equation at "t+At" time moment, related using the total virtual mechanical work
principle, with real forces in dynamic equilibrium and virtual displacements (Bathe, 1982), is:
teAt
[ 088" 4y dv=""L (8)
Wy
where " A(;Sij - PK2 stresses tensor components, in configuration of the body at time "t+At", related to the

body configuration at the initial time t=0;
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X;, - (i,8) element of deformation gradient;
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t+At

Oe; - GL strains tensor components in configuration at "t+At" time, related to the body shape at initial

time moment, t=0,
1
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where ‘ (: ui,j :?;(—
““L - total virtual work of external and internal (gravitational) forces, when body is submitted to a
displacements variation at "t+At" time moment.

Three in-plane PK2 stresses contribute to the strain energy and four displacement gradients appear in the
corresponding GL strains. The four displacement gradients are arranged as:

T a]x éh.\' d'lx éhy
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The strain measures chosen are the three components of the GL strains - [T: ] = (sij); L]I=Xy.
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For the incremental solution of equilibrium equation at "t+At" time moment, movement general equation
around the state from "t" time will be linearized and using the generalised Newton - Raphson iteration, it will
be obtained the equilibrium equation written under incremental shape for a finite element in deformed state,
with implicit Gauss integration time.

RESULTS

It have been established the stress and strain state which appear inside the structure of the dam and of the
hydroelectric dam station in interaction with foundation soil, which represents the result of an excitation at
base produced by a vrancean earthquake like that from 4 March 1977, it have been taken into account as
loading hypothesis the own weight of the structure together with static and dynamic water pressures. Seismic
calculation forces has been considered in conformity with Romanian seismic calculation Normative P100-92,
after a variation rule in concordance with first five vibration modes of the structure.

It was established:

- deformation shapes and maximal deflection - fig.2;
- frequencies and modes shapes of structure - fig.3;
- stresses and maximal stresses.
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Fig.2a Strained Structure - loads:weight
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Fig.2b Strained Structure - loads : weight + water pressure
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Fig.3a Frequencies and Mode Shapes no.1
fi= 1.2 Hz ; ®,=7.55 rad/s ; T, =0.83s

Fig.3b Frequencies and Mode Shapes no.2
f,= 1.79 Hz ; 0,=11.26 rad/s T,= 0.56s
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3¢ Frequencies and Mode Shapes no.3
3= 1.98 Hz ; ©;=12.42 rad/s T;= 0.51s
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