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ABSTRACT

Investigating the earthquake stability of buildings, the effect of ductility, supposed to be favourable, is
considered throughout the world: the force /' substituting the horizontal earthquake impulse acting on the
elastic system is devided by the u = A,/A.ductility factor. This ductility factor varies between 2 and 12, e.g.
in in the US for reinforced concrete structures u = 8. As a result, buildings are analysed on a low load level
in elastic state, where displacements are small. Thus the unfavourable effect of the vertical load is either
neglected or considered only approximately (as a linear effect). In fact, plasticity and buckling are both
nonlinear and they must not be superposed. According to correct analysis, this is a serious mistake at the
expense of safety. Due to this usual method, throughout the world many earthquake-engineered buildings
fall or collapse, burying thousands of people under themselves. For more detailed analysis, we conducted
different investigations considering the moment-increasing effect of the vertical load, applying a factual
¢lasto-plastic model with a ductility factor un = 12. Calculations were made by the energy method and also
by solving the differ-ential equation of motion with step-by-step method. Results were checked by experi-
ments. It can be seen from the results, that the impulsive force has a critical value, thereafter the displace-
ment is going to infinity, whereas the velocity is not decreasing to zero, thus vibration will not stop. The
plastic spectrum curve (dynamic factor) is bending to infinity, whereas the elastic spectrum is decreasing
with the vibration period. Our investigations indicate that the earthquake design applied throughout the
world is false. Certain formulaes were derived for correct design. Design is proper if the favourable effect of
ductility that sometimes occurs is considered as a reserve and not taken into account.
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1. INTRODUCTION

A basic question of investigating earthquake stability of buildings is the determination of stresses caused by
the horizontal earthquake impulses. As long as the structure remains in elastic state, the customary methods
of dynamics can be used, and the calculations, although through many steps, can be done. Some decades ago
it was revealed that in special cases plastic deformation is capable of absorbing a considerable amount of
energy, and this effect was introduced into earthquake analysis [1,2,3]. The plastic behaviour of structural
materials was denominated to ductility, and a ductility factor p was introduced, what can be calculated as
the ratio of the limiting plastic deformation 4, , and the limiting elastic deformation 4,: u = 4,/4, . This
phenomenon is shown on Fig. 1. Here /', is the substitute static force, that causes a static deformation equal
to the deformation caused by the dynamic effect, when the impulse excitation is constant and lasts for time
tod’e Bmay, where mis the concentrated mass at the tip of the bar, g, is the exciting r acceleration, that, when
multiplied by the mass, gives the force of the momentum, B is the dynamic factor. Investigating an elastic
structure B = 2, when /7' >1/2, and B = 2sinnt, /1" when ¢,/7 <1/2. Here I' is the period of time of the
structure. I, is the plastic limiting force, A, is the elastic limiting deformation of the ideal elasto-plastic bar,
Ay, is the plastic limiting deformation. We must note that a substitute mass can also be determined at the end
of a bar with continuous mass distribution, that makes dynamic calculations simpler. The structure shown on
Fig.1. is the simplest single-mass structure of one degree of freedom, but the dynamic behaviour of a build-
ing can be well represented with it. The P-4 effect is the characteristic of an elastic bar, that the bar loaded
by the force P is also stressed by an increment of bending moment M=PA ,what causes further deformation.
As the force # approaches EULER's critical force Pop, A to infinity. If the stress of the bar reaches its stress
at fracture, during the increase of the deformation, the bar failures. Suppose that P = 0 in the direction of
axis, and the horizontal static force /' causes the static displacement A of the tip of the bar. In seismology
the force 1, in general, is the product of the exciting acceleration g, that substitutes dynamic effects, and the
mass m. It is to be noted here that if the acceleration excites the capture cross-section of the bar instead of
the mass, than the acceleration «, excites the mass m with I - ma, for A < A, values of deformation, but
after this with £, with opposite sign as it would be accelerating mass m directly. In case a vertical force /1 m
the direction of the axis also acts on the bar, the deformation A increases to the value AgW=Aq( 1-¥/p,, yl.
Here P, mlZI/(21)2 is the critical force, where / is the elastic coefficient and / is the moment of inertia of
the cross-section. This increase is called the P-4 effect. For further simplification suppose that the bar is
substituted with a bar fixed with a spring at its lower end, than the spring constant must be selected to
describe the behaviour of an elasto-plastic bar. In this simplified case the displacement caused by the force
I is Ag='/¢ , and the critical force P, K/ Up to this point the teoretical examinations show that in some
cases the behaviour of an elasto-plastic structure differs from the behaviour described by the references. The
point of this behaviour is that not only the vertical force, but the horizontal force also has a critical value. A
force greater than this critical value causes the destruction of the structure. This phenomenon is the conse-
quence of the force ”, what has not been considered properly in the researches. Whereas this phenomenon
has not been described in the preferences known to us, we found it proper to check the phenomenon by
proper calculations and experiments considering the effect of the force £ and the plastic behaviour. This will
be introduced in the followings.
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Fig. 1. a, Ductile modell for earthquake analysis.
b, Deflection. ¢, Effect of the ductilility factor



2. THE CONVENTIONAL DUCTILE ANALYSIS

Investigating carthquake stability of buildings, the effect of ductility, supposed to be favour-able, is consid-
ered throughout the world. That means the multiplication of the force /', acting on the elastic system by a
reducing factor a, which determining for the different materials. The reducing factor a was gained by equal-
ising the energy /:(elastic) done by the force /7, with the work /:(plastic) done by the force [y, Equalising the
deformations, the relation for oy is the result. Fig.1. shows the comparison of these two factors. American
carthquake stability investigations use the factor ay on condition that p = 8. The P-A effect is either neglected
when the deformation is limited, or considered at the determination of the multiplicator ‘P of the increment of
elastic buckling. Thus the seismic force is calculated by the formula /= Fea'f. The fault in the customary
method described above is the fact that it superposes the results of non-linear systems, but superposition can
be used only on linear systems. An additional fault of the customary method is the decreasing of the load in-
stead of increasing the opposition of the structure by the effect of ductility. In this case the calculated defor-
mations are so small, that the non-linear effects seem to be insignificant, and the problem remains hidden.

3.THE PROPER METHOD OF DUCTILE DESIGN

It is well known, that the critical state of an elastic structure can even be valued by finding the critical force
I",., at a constant P force, that takes the structure, through an indifferent state, to an unstable state by caus-
ing an increasing deformation. The point is that, if an earthquake impulse causes plastic deformation (yields)
in one direction, than the next plastical yielding happens in the direction of the original plastic deformation,
even in case of a small-er impulse. In this essay, a finitely short term impact on a unimass system excited by
the impuise /¢, is examined, considering the work Ps done by the force  during the vertical dispiacement s
caused by the displacement A. Here ¢,, is the finitely short period of time, s is the displacement of the tip of
the rod in the direction of force /.
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Fig2. a, Simple modell for the analysis with vertical force.
b, Statical force-deflection diagram of the experimental modell.



3.1 Investigation by Encrgy Method

In the followings a rigid, weightless console, shown on Fig.2a, will be investigated by encrgy method.
Attached to the console there is a unimass m weight on the upper end, and an elasto-plastic spring, that has a
spring constant £, at the lower end. According to the principle of the conservation of energy, the energy
equation 17~ Mgy - [y ~ Igjn can be written, where 71 is the total potential energy, /1, is the potential
energy of the internal, 71, is potential energy of the external forces and /iy, is the kinetic energy. It is to
be noted that [l = L,y 7, where Lyy g is the work done by the external forces, and /1, = Ly, where Ljy 1
the work done by the internal forces. The external potential energy /1y - Lexs + Lex2, Where Ly is the

A
work done by the horizontal force /* may, thatis © L= OJ a,-m-dA. Here ag is the exciting accelera-

tion, m is the mass and A is the displacement. In case d, and m are constants, than Leyx;  agmA. If ¢, 1s the
period of the effect of the constant force /7 may, than the impulse is : /; ~ agmt,, In case of a short duration
of lmpulse 1, (t,< 1'5), neglecting the little work done by the spring force during this short time, the veloci-
tyisv [;m, and using this, Lex1™ag mt,,(O Sagt()-) 0.5/,2/m, the work of the force giving the momentum
can be calculated by the equation. Here 7' is the period of time. The second component of external work can
be calculated by the work done by force P along s falling displacement, that is ,,, Ps. Here P-mg is the
force of gravity, where g is the gravitational acceleration. The mass m approximative moves along a circular
arc, and the value of s comes from the equation A2 + ( L-s )2 = 2. In case the equation A </./2 is true, and
s~ A22L is acceptable. Considering this, the external work in case of a short, constant momentum /4= agmi,
iS Loy Lext i Lexz 0.512/m+0.5PA2/;, while in case of a constant, long term impulse it is Lgy - dgmA
+0.5PA%/; . The internal potential energy of the structure acting against the motion is given by the equ.
Dip-Lipe' Linpit Eq. Here, in the elastic section of A <A, , Ljp e ~ 0.5FpA is the internal elastic work.
Force /), can be expressed by the spring constant &, /7, kA The internal plastic work in the A>A, section
is: Linpl 1 4- 4¢/2 ), where I, kA, is the plastxc critical force. The internal plastic work Lj, pj is
converted into heat during the motion of the structure, thus there is no elastic energy accumulated from this
and it does not form returning force. I is the energy used up during the internal damping of the structure,
that is neglected in this investigation because of its low value. The elasto-plastic internal potential energy /1
ininthe stateis :[Ly, Lip*Lip ;' Liy 2 °0.5F 4+ I(4-0.54,). As for the kinetic energy, it is calculated

from the equation /;, .5mv2, where v is the first differential quotient of 4 according to time. Examining
the motional state of a structure, the followings can be stated : Considering the conditions of equlibrium the
structure remains in motion until /72>0, because kinetic energy is present in the system. When /=0, motion
stops, and equilibrium ensues. After this, the equilibrium must be examined, whether it is stable or indiffer-
ent. In case dll,y - dll;,, namely the external work in the course of a short displace-ment d4 is equal to the
internal work, the system is in an indifferent state. This state is called the critical state, and the displacement
A that belongs to this state is the critical displacement. In case /70 exists, and d/Fd/llyx-dl1;n <0,

than the investigated system is in equilibrium and is stable, since after this short displacement it returns to its
original state. On the other hand, when /750 or [7=0 and d/fi=d[lx-d[1;,>0, the system is unstable and
keeps on moving. Thus, to find the critical state, the requirements /70 and d/#=0 must be satisfied. Values
of dI1 are usually examined by the ditferential quotient. These are shown on Fig.3. plotted against the dis-
placement A The L, external work can be seen on Fig.3/a. When P -0, than after the displacement value 4
(1,), Ly is constant, on the other hand, when a vertical force P exists, the increasing 4 results in an increas-
ing Ley. Fig.3/b shows the work £;,,. The larger the spring constant £ is, the larger the internal work /.y is,
and the smaller the & is, the smaller the internal work L;j, is, if A remains the same. On Fig.3/c, the differen-
ces between /.., and L;,, and the kinetic energy Ky, is shown. As long as it is not equal to zero, motion
keeps on. Take a look at Fig.3/d. Here a smaller force / is combined with a larger spring constant, thus the
two curves are intersecting and motion stops. This happens in all cases when P 0 and ¢, is small. In case of
a larger /7’ force or a smaller spring constant, the case shown on 3/e is reached, when the two lines are touch-
ing cach other at the point 4., (critical displacement). The result of a further increase of / or a further
decrease of spring constant is that, the two curves are not intersecting, always there is a remaining kinet-ic
cnergy /i, namely IT> 0, so the motion of the structure never stops, it fails.It is to be noted that if P27,
the structure suffers deformation even without horizontal force. tere /., kL, the EULER's critical force is.
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Analysis by the energy methode. (Explaination is in the text.)

In the followings the short term momentum 4, < 73, and the the longer impact that keeps at least until A,.,
each acting on elastic or elasto-plastic structures, will be examined separately, for each =0 and P+ 0 cases.
Since we want to find the condition when motion stops, the velocity v = 0 and the kinetic energy can be
neglected. Thus the energy equation is the following : Lgy = Lj, With the help of the analysed works the
equations of work can be stated and the limit displacements (A,,,,) can be determined. The results are
summarised in Tabelle 1. and Tabelle 2.

3.2 Investigation Using the Differential Equation of Equilibrium

In the equilibrium-deformation differential equation the horizontal force is : Pw/(L-s). In case of accepting a
parabolic instead of a circular motion for the values of s when A<0.5L, the error is less then 1%. Beside this
the internal damping occurring in the range of elasticity can also be neglected because of its low value.
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Thus the differential equation of equilibrium in the range of elasticity is :
mag - mA" - kA -P/(L-s)A=0. (1/a)

In the range of plasticity the difference is that the force increment of the rod after the elastic limit A, stops,
and the value kA =F, takes over the place of the term kA in the equation. So the differential equation of the
range of plasticity is :

mag-mA"-Fu+P/(L-s)A=0. (1/b).

Naturally the two equations are equal when A=A,. If the value of s compared to L is neglected, the error
originating from this increases quadratically to A, and it reaches 10% in the term expressing the effect of the
force P when A<0.5L. Considering this, the value of s compared to L can be neglected. The analytic solu-
tions of the (1) equations are not known yet. Therefore, to solve these equations, the different step-by-step
solution methods have developed. One example of these is NEWMARK's method of average acceleration,
that uses a constant acceleration on the investigated differentially small section, or the method of linear
acceleration, that considers acceleration linear on the investigated differentially small section. These methods
have developed for manual calculations, and use intervals of 0.1-0.5 seconds. Since computers are capable of
handling the problem even with much smalier intervals, there is no point in specifying these methods. There-
fore in our examples the results were calculated by transforming the differential equations into difference
equations, and these were solved by step-by-step method. Thus the solution is similar to NEWMARK's
method. The difference equations are the followings: The difference equation in the range of elasticity :

A, =24, +A,, P
mag - m—=— b KA+ T A=, (2/a)

The difference equation in the range of plasticity:

A 20 +A, P
Mayqy - m—=—es——tt - Fy + T Ai = 0. (2/)




A problem is in the solution, when all values at time ¢ 0 are zero, because in that casc the analysis fails in
the beginning. In our case it did not occur, since acceleration dg was a constant. In the case of the equations
(2) the analysis begin at time (0, when A;_,~A;-0, and A;_; can be calculated. At the next interval of time A
t only A;_; =0, and from the third interval neither of them equals to zero. This means a small error at the
beginning of the calculations, but this is neglected, since very small As can be used. In case of exciting the
clamping instead of the mass, the calculation is modified. In the range of elasticity the acceleration of
support has a similar effect to the case when the mass is accelerated with the same value but in the other
direction. In the range of plasticity the level of excitability is limited by the value of I, when ag m>F,,

4. EXPERIMENTS

The theoretical investigation described so far have revealed that in special cases the structure behaves
differently from that the references describe. The essence of this difference is the fact that not only the
vertical force, but even the horizontal force has a critical value. A force greater than this critical value causes
the failure of the structure. This bilateral effect is the result of the force /, what has not been considered
correctly in the references. Since this phenomenon has not been mentioned in the references known to us, it
seemed proper to verify the analytical method by experiments. Extending the verification only to the model
examined theoretically in the essay, seemed correct for the time. The model of the experiment used in the
calculations, the cross section and the elasto-plastic model of the applied steel baris shown on Fig.2. In the
course of the experiments the path and the acceleration were measured, while the velocity was determined
by the differentiation of the path or by the integration of the acceleration (with the controlled coordination of
these two methods). Originally 15 experiments were planned, so that, by setting the different parameters the
critical phenomenon were encased. Unfortunately, owing to different faults (collision of parts, data loose of
the controlling computer etc. ) four of the experiments turned out to be unsuccessful. Therefore 11 of the
results of the experiments were valid. The results of experiments were recorded with an interval of 0.02 sec.
by the measuring instrument. The controlling calculations of the completed experiments were done with an
interval of 0.005 sec. The calculated and the experimental values of displacement are shown on Fig.4.
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Fig.4. Experimental results. DI impulse is smaller, D11 impulse is larger then the critical one.

Fig.4. shows the analytical and the experimental series of data gained from two experiments, one of which
was before (D1), the other after (DI 1) the critical state. On the figures we stated the impulsive exciting ac-
celeration as well as the time-history of the acceleration g, velocity v and displacement u of the mass m.
The thick continuous line represents the experimental results, while the analytical values are indicated with
the thin, dashed line. On the evidence of the figures the analytical and the expe-rimental results are nearly
identical and the critical phenomenon exists. In the experiment D1, as an effect of the momentum



I, 200 mkg/sce, the velocity decreases to zero at around 0.7 sec., displacement stops, so the phenomenon
is stable. As a contrast, in the experiment 111 the cffect of the momentum /; 214 mkg/sec does not result
in the decrease below zero, so the displacement A increases unlimited, the phenomenon is unstable. The
critical state is between the two values. According to the requirement may?t,? 1% A(( Per/p-1') the critical
momentum is /; 212 mkg/sec. These values prove that the analytical method is correct.
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Fig.5. a, Maximum deflection of the modells in function of the exciting acceleration. .
b, Elastic and elasto-plastic deflection spectra of the modells with and without vertical P force.

For the sake of interest the displacement values were calculated for different values of exciting acceleration

dg, when the time of exciting was £, 0. 15sec. This diagram is shown on Fig.5a.Until the critical limit the dis-
placement A, is proportional to ag, but after the critical limit it increases rapidly until it reaches the criti-
cal exciting acceleration a, = 6.22 m/sec2, from which point theoretically it increases to infinity. This infini-
ty value comes from the approximations, since the tip of the bar moves along a circular curve instead of a
parabolic one, thus A,z could be at most L. In case the spring constant k is changed, 7' period of time also
changes, and, with the values of A, spotted against 7, the values of Ay, Ay, give the deflection spectra.
This calculation can be seen on Fig.5/b. It can be seen that while in case of P -0, the spectra decreases when
T increases, when P =0 the decrease changes to an increase. This has a meaning that the softening of an
elasto-plastic structure has damaging effect.

S. RESULTS

It is obvious from the research, that the customary method of investigating earthquake stability, that consid-
ers with the reduction of the loads, is faulty, and in some cases it causes significant undersdimensioning.
The issue of research indicate that the worldwide applied ductile analysis must be revised.
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