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ABSTRACT

Soil parameters disperse in a great range so that they are treated as random variables in general. In order to
obtain the analytical results, the stochastic finite element method has been introduced. This method presented an
accurate solution under short CPU time in earthquake engineering practices. This paper examined the effect of
uncertainties of soil parameters under horizontal static loading in earthquake. The uncertainty of soil strength
influences on soil behavior.
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Introduction

The past severe earthquakes caused large damages to various soil structures such as embankment and slope.
Soil structure failures in a part of the Sasana area near the northern edge of the aftershock zone in 1994
Northridge earthquake in Southern California were reported?).

The various uncertainties were caused by subjective or objective reasons when the soil structure was analyzed.
Most of analysis, concentrate on parameter variability and ignore estimation errors. However, in principle,
A @Iater sources of uncertainty can be incorporated with existing techniques. The uncertainty, actually due to



ignorance, is divided into two artificial components, i.e. random fluctuation and estimation error in observation.
Soil parameters disperse in a great range so that they are in general treated as random variables. In order to
obtain the analytical results, Monte Carlo simulation has been frequently used. However in the simulation, the
greater the number of parameters involved, the more the CPU time is needed. Recently, a new method, a
stochastic finite element method(SFEM) has been introduced?). This method presented an accurate solution
under short CPU time in earthquake engineering practices. The coefficient of variation of soil parameter is less
than 10 percent.

The one-dimensional models address variation along vertical lines in the subsurface. Soil behavior such as
settlement is calculated by integrating one-dimensional deformations induced by a deterministic stress field.
Similar models were developed by Diaz and Vanmarcke3). Stochastic finite element technique for two
dimensional soil behavior was suggested by Comell4) in a general discussion of the applicability of the second-
moment approximation to linear system. Applications of stochastic finite element methods to rock and soil
mechanics have been made by Su, et al.5) and Cambou®). Cambou applied the second-moment approximation
to a linear solution of finite element method that include autocorrelation among the soil properties. Existing
probabilistic soil behavior models, including stochastic finite element method and so on, are the extensions of
deterministic techniques in which input parameters are allowed to vary. Thus, these models have the same
limitations as deterministic models and should be regarded as refinements of existing techniques.

The present study is to propose a procedure to estimate the displacement and stress of soil structure with the
elasto-plastic problem in consideration of uncertainty by using SFEM. In this paper, the results of two-
dimensional elasto-plastic are analyzed with the first-order second-moment method using finite elements. The
effect of uncertainties of soil parameters under horizontal loading in earthquake is also examind.

The two-dimensional model developed here uses finite element discretization of elasto-plastic soil, and uses the
first terms of Taylor series expansions to the calculate mean and variance of nodal displacements and stresses in
elements.

Nodal displacements are calculated by solving the following system of equations,
ku=P, DBu=0

in which k = the stiffness matrix, 4 = a vector of nodal displacements and P = the load vector, D = the
stress-strain matrix, B = the strain-displacement matrix, ¢ = the vector of stress .

As a nonlinear problem, equations of this type can be solved by a suitable iterative technique, and any one of
the many standard methods can be applied. We do not discuss details of such procedures of iteration in this
paper, but we only discuss the obvious methods, in which the systems of equations are repeatedly solved with
successively improved values of k. In order to evaluate the stress conditions the finite element analysis with
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elasto-plastic is appropriated. The soil behavior of the nonlinear system can be obtained efficiently through
equivalent linearization.

Assuming that the stiffness matrices change with force increments, the performance function consists of k™' in
the problem. It is therefore necessary in the search algorithm to repeat the computation of k™ and k™ /3y,

(y,=random valiables), so that we reach the rupture point on the failure surface.
Pr ilisti roximation

A multidimensional Taylor-series expansion is necessary before expectations are taken. If x; is a function of

several random variables, that is

X; = 8(Y1, Y25 ¥n)

in which y=random valiables. We obtain an approximate mean and a variance of x; similarly as follows.
Expanding the function g(y,,7,,....7,) in the Taylor-series about the mean values (4, .4, ,...1, ), we have

X; = 8Hy, My, oo by )+ D (Y —uk)—+— ( X
roHy Ya Z} kT My 7. LZI,; Ye — 1, )Y — 1y,) 3)’/:9)’1

in which the derivatives are evaluated at (1, .4, .../, ). In particular, the first-order approximation to the

moment of

Elu;]=g(i, .1y, .1, )
Varlu,] = 2 2-—3-{{--295- Cov(y.7]

k=1 I=1 k !

in which u; = the displacements at i node and Cov = covariance of valiables. The moment of stress is obtained

as

EL6,1= Fy, Hyvoetly,)
J
Varlo1 = 3.3 2% Covy,,y,1

k=1 [=1 k 1

in which ¢, = the stress in i element.

Failure conditions

The strength of a soil is usually defined in terms of the stresses developed at the peak of the stress-strain curve.
It considers that there are some rupture diagram of the soil, for example, Mohr rupture and so on. The
condition for failure corresponds to Mohr's rupture diagram in which the failure envelope is a straight line. In
the study, we use Mohr's rupture diagram for condition and Coulomb's equation.



Analytical model

The data of soil properties are estimated as the
Young's modulus E and Poisson's ratio v .
Each value and the correlation of £ andv are
calculated from actual field test data. As a
probabilistic analysis, Young's modulus and
poisson's ratio are assumed to be normal
distributed, and the other parameters are
assumed to be deterministic. The finite
elements mesh used in the present study is
shown in Fig.1. The stress-strain curve for
soil behavior is approximated shown in Fig.2.
This curve shows strain-softening property.
The coefficient of variation of statistical soil
parameters is to be 0.1. The assumed
properties of the soil are listed in Table 1.

The model consists of 44 plane triangular
elements with 33 nodes. The nodes along the
lower edge of the model are fixed and at the
right side fixed boundary is excited by the static
loading in the horizontal direction. The
displacement field is defined in terms of two
components uy and uy in this example. The
field include the body forces of gravity and the
external boundary force due to earth pressure
from the backfill.

Analytical results

The computed displacements show large
difference among the node. Fig.3 shows that
the computed nodal displacements in both the
horizontal and the vertical directions increase
with the incremental loading step. Calculations
of the means of nodal displacements are the
same as in the deterministic case. Fig.4 shows
that the calculated coefficients of variation of
that are relatively large, i.€., more than 0.2 at
the all step of incremental loading.
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Fig.1 Finite element mesh for the analysis
of soil structure.
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Fig.2 Stress-strain curve for soil.

Table 1 Soil properties and statistical parameter.

Mean of Young's
modulus E 540 MPa
Mean of Poisson's
. 0.3
ratio v
Coefficient of variation
of Eand v 0.10
Unit weight 22.5 kN/m*
Compression critical
. 11%
strain
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Fig.3 Mean of nodal displacement under force increments.
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Fig.4 C.o.v. of nodal displacement under force increments.
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Fig.5 Mean of stress in element under force increments.




The solid lines denote the coefficient of variance of nodal displacements at the nodes 1 and 19 when the
variables of soil are correlated each other, and the segmented lines denote those when the variables of soil are
not correlated. The correlation of variables only influence on the results. At the first loading step, the
coefficient of variance of nodal displacement is relatively large. At the other step, the coefficients of variance
of nodal displacements become small because the means become large.

The means of compressive stresses in the elements 1 and 20 are shown in Fig.5. It shows that the mean of
stress in element 20 in the horizontal direction is greater than that in vertical direction. This can be attributed to
the increased pressure values as a results of deformation of backfull soil under the loading. The stochastic
finite element method is useful analysis of actual soil structures where the information are available.

Conclusions

The method of reliability analysis of soil structure considering soil parameter uncertainty is introduced. The
coefficient of variation of soil strength influences on soil behavior. First-order second-moment stochastic finite
element techniques allow predictions in random problems based on more realistic analysis than current
techniques, and allow the incorporate of variability of soil properties which the deterministic finite-element
techniques do not. In principle, stochastic finite element methods can be applied to soil structures with elasto-
plastic behaivor at reasonable computational costs.
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