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ABSTRACT

The nonlinear earth dam - foundation interaction is considered based on a general, rigorous, efficient coupled
finite element - boundary element formulation. The dam body and a finite region near the dam, which may
consist of materials that behave nonlinearly, are modeled with finite elements. The rest of the halfspace,
consisting of a linear elastic material, is modeled with boundary elements. The general formulation is applied
to show the effects of nonlinearity and soil-structure interaction on the dam response, using a simple
nonlinear model.
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INTRODUCTION

Earth and rockfill dams built in seismic regions, must be designed safely and economically to withstand
potentially strong earthquakes. Extensive earthquake damage or failure of such structures may result into
substantial loss of life and property or cause serious environmental protlems. This paper presents a general,
rigorous, cost-effective method for nonlinear dynamic soil-structure interaction using a mixed finite element-
boundary element (FE-BE) formulation. In general, a realistic assessment of the behavior of earth and
rockfill dams to strong ground shaking depends significantly on the prcper consideration of factors such as
the nature of seismic waves, site effects, the dynamic soil-structure interaction, accurate measurement of the
material properties, and the nonlinear behavior of the materials, including the development of water
pressures and large residual deformations (Gazetas 1987; Gazetas and Dakoulas 1992; Gazetas ef al. 1994;
Finn et al. 1995; Dakoulas 1993; Dakoulas et al. 1995, 1996; Abouseeda et al. 1995). Due to inherent
limitations, current methods of dynamic analysis of soil-structure systems may consider inadequately
essential factors controlling the response. The FEM allows significant flexibility for problems of finite
domain, but it is not perfectly suited for dealing accurately and efficiently with infinite domains. On the other
hand, the BEM is superior in handling infinite domain problems, but it can only treat efficiently linear elastic
problems. To benefit from the advantages and avoid the limitations of the two methods, a hybrid FE-BE
method has been developed for problems of complex geometry, material heterogeneity and nonlinearity in
the near field (Zienkiewicz et al. 1977; Brebbia er al. 1984; Beskos 1987; von Estorff et al. 1989).
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NONLINEAR COUPLED FE-BE FORMULATION

The dynamic soil-structure interaction model assumes that the dam anc. possibly a foundation soil layer (near
field) may behave nonlinearly, whereas the rest of the halfspace (far field) behaves as a linear elastic material
(Fig. 1). The far field region, QF , is discretized using the BEM. The BE nodes of QF are divided into the
outer nodes I’} and the interface nodes I'3. The near field region, Q" | is discretized using the FEM. The FE
region nodes of Q" consist of the interface nodes I'f” and the remainir gnodes I'Y".
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Fig. 1.Earth dam, foundation layer (near field) and elastic halfspace (far field).

Boundary Integral Formulation

For zero initial conditions and body forces, Love’s integral representation becomes (Eringen et al. 1975)
c,-jui(ﬁ, )= J'{Gint,-(x, t)"Fijxui(x’t)} (D
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where u,(x,t) and t;(x, 1) are the displacement and traction components i at point x and time ¢ Gij =
Gi(x,1,§,1) and F ij = Fij(x,1,€ 1) are the displacement and traction components i at point x due to a
concentrated pulse in direction j at point & in a homogeneous linear elastic solid of infinite extent; and ¢ is
a constant. This system of equations can be solved for the displacements and tractions for any boundary and
interior point. The numerical solution requires approximation of the temporal and spatial variation of
u(x,t) and t,(x, t) , which are assumed constant within each time step. At time step N, (1) is written as
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where {uN} and {tN} are the displacement and traction vectors for all boundary nodes; GZ. and F Z are
the temporal integrals of the fundamental solutions Gjand F, ;j at time step n. The geometry of the boundary is
modeled using isoparamet;jc linear elements, for which the coordinates, displacements and tractions are
computed as {x;} = [N B] {X,} where X; are the corresponding nodal values and N B is the shape function

of a standard element with coordinates (&, ). Thus, (2) becomes
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where U[Y, TX are the nodal displacements and tractions and M is the rumber of boundary elements. After
integration, (3) is expressed in a matrix form as
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where [G"] and [F"] are the coefficient matrices of the system at time nAz . For the current time step N, all
traction vectors for n=/ to N (representing the seismic excitation) and displacement vectors for n=1 to N-J



are known. Truncation of the boundary at a certain distance from the structure has given very good results
(Abouseeda and Dakoulas 1995; Dakoulas and Abouseeda 1996).

Finite Element Formulation

T -
The displacements within each FE are approximated by {u;(x,1)} = [NF] {u;(t)} , where NFis the
shape function and 7,(¢) are the nodal displacements. The Galerkin weighted residual formulation is used,
with a weighting function identical to the shape function. This discretization scheme yields the equation

[M ii+[C]u+[K]u+f=O (5)
where I:M:l , [C] , and I:K] are the global mass, damping and stiffness matrices. The involved integrations
are evaluated using the Gauss quadrature. The time integration is carried out by the Newmark B scheme,
which approximates the displacement derivatives at time (m+1)At from the displacement and its
derivatives at time mA¢. The nonlinear inelastic behavior of the material is incorporated by using a time
lagging procedure. The system matrices are computed for each time step.

Coupling of Boundary and Finite Elements

Equation (4) can now be written as
N
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where [V"] = [Gl] [F"] and [(W"] = [Gl] [G"] . Equation (6) can be further modified as:
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where the i subscript denotes the interface nodes and the o subscript denotes the outer nodes. Equation (7)
represents two linear systems with unknowns ¥ and 1), respectively. By eliminating Y, one can write the
following expression:
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where
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(14)

[ 71] = [Wf'o] - [¥] [W{,’o] (15)

Since the tractions on the outer surface are known, {R} is also known, and (8) can be used to compute the
displacements {ulN } and tractions {th } at the interface nodes I",B. Sirailarly, the FE subregion nodes are
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divided in the interface nodes I'f and the remaining nodes I'F. Equation (5) can be written as
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Note that {¢} represents the tractions along the boundary, whereas {f} represents the forces at the nodes. By
expressing the BE tractions as a function of nodal values

B.T
{tN} = [N"] {}} (7)
the nodal forces are computed using the transformation matrix
F.T B
A= |[N][N]1dT, (18)
T;

From (8), (16) and (18), the following system of equations is obtained
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which is solved for the displacements al, aV and the tractions N at the time step N. Once these values are
known, the displacements at the outer nodes of the BE subregion 2 can also be calculated. Further
condensation of (19) can be achieved, if only the near field response is of interest.

Nonlinear Stress-Strain Model

Although the final version of the formulation will incorporate a rigorous elasto-plastic model, the current
version uses the simple Ramberg-Osgood model with the Masing criterion. The 1y curve is defined by

Y_Tiaz for virgin loading (20)
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where v, and T, are the yielding strain and stress, respectively. For o= 1.5 and r = 2, the modulus reduction
and damping ratio versus cyclic shear strain are in good agreement with the experimental data.

APPLICATION: NONLINEAR RESPONSE OF A DAM - FOUNDATION SYSTEM

The general formulation presented above is now applied to examine the effects of the soil nonlinearity and
soil-structure interaction on the response of an infinitely-long homogeneous earth dam. The dam has a height
of H= 100 m, slopes 2:1, shear wave velocity ¢4 =400 m/s, mass density py = 2000 kg/m3 and Poisson’s ratio
vy = 1/3. The dam body rests directly on the elastic halfspace which assumes two different values of
shear wave velocity equal to cg= 1000 m/s and oo (rigid base), respectively, mass density pg= 2400 kg/m? and
Poisson’s ratio v ¢ = 1/3.The dam body is discretized with four-node plane-strain isoparametric elements,
and the halfspace with two-node boundary elements. The discretized length of the halfspace surface is taken
equal to five times the dam base width. The excitation consists of vertically incident SV waves yielding free-
field response identical to the El Centro record scaled at a peak grourd acceleration equal to 0.6 g. The
following four different nonlinear analyses are performed: (a) Rigid base (cg= o) and weakly nonlinear soil
behavior ('yy =0.001); (b) Flexible base (cg = 1000 m/s) and weakly nonlinear soil behavior ('yy =0.001); (¢)
Rigid base (c¢ = o0) and moderately nonlinear soil behavior (yy =0.0003); (d) Flexible base (cg = 1000 m/s)
and moderately nonlinear soil behavior (v,=0.0003). Fig. 2 plots the peak accelerations, displacements,
shear strains and shear stresses along central axis of the dam for the four analyses. Notice that the level of
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Fig. 2.Peak values of acceleration, displacement, shear strain, and shear
stress along the central axis of the dam.

nonlinearity has a significant effect on the value of the acceleration amplification, AF. For the flexible base
the crest amplification is only AF = 1.3 for moderate nonlinearity and AF=2.3 for the weak nonlinearity. The
corresponding values for the rigid base are AF=1.5 and 2.7, respectively. The peak displacements seem to be
significantly lower for the flexible base. This is also true for the peak shear strains which in the upper part of
the dam body appear to be up to 50% lower for the flexible base. The peak shear stresses are significantly
lower for the more nonlinear behavior due to the higher degradation of the material. Fig. 3 plots the
acceleration time histories at four points A (crest), B (slope), C (quarter height from crest) and D (base), as
shown schematically in Fig. 1, for the four cases (), (b), (c) and (d). For the cases (a) and (c) corresponding
to rigid base, the acceleration at the dam base (D) is of course equal to the El Centro record. Fig. 3
demonstrates the significant effect of the soil nonlinearity on the amplitude and high-frequency content of the
acceleration response. There is an apparent decrease of the hi gh-frequency content from the base to the crest
of the dam. Fig. 4 plots the shear strain time histories at the points B, C and D. The accumulation of residual
strains is evident in the upper part of the dam and of course is higher for the more nonlinear behavior and the
rigid base. Fig. 5 plots the time histories of the nonlinear shear stress - shear strain relationship computed at
point B for the four cases examined. As expected, the smaller strains are experienced in the case (b) and the
 larger strains in case (c). Due to space limitations, only preliminary results are presented here indicating the
general trends and the potential of the coupled FE-BE method for nonlinear SSI analysis. More
comprehensive results from extensive parametric studies currently under way will be published elsewhere.
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Fig. 3. Acceleration time histories for points A, B, C and D within the dam body.
(a) Rigid base, weakly nonlinear, (b) Flexible base, weakly nonlinear,
(c) Rigid base, moderately nonlinear, (c) Flexible base, moderately nonlinear.



? Point B

Point B

" Point B

" Point C

035 3 6 9

Time (sec)

12

15

"Point D

0 3

6 9 12
Time (sec)

Fig. 4. Shear strain time histories for points B, C and D within the dam body.
(a) Rigid base, weakly nonlinear, (b) Flexible base, weakly nonlinear,
(c) Rigid base, moderately nonlinear, (c) Flexibl: base, moderately nonlinear.

CONCLUSIONS

15

A general, rigorous, coupled finite element - boundary element formulation was presented for nonlinear earth
dam - foundation interaction. The method proved to be computationally very powerful, allowing efficient
nonlinear analysis of 2D soil-structure interaction problems. This formulation can be used to assess the
relative importance of the effects of nonlinearity, soil structure-interaction, presence of a soft foundation
layer, type of excitation (P, S, Rayleigh waves), and other parameters affecting the response. Preliminary
results from few analyses of a dam-foundation system using a simple nonlinear model were presented to
show the effects of soil nonlinearity and foundation flexibility. The incorporation of a more rigorous elasto-
plastic model for effective-stress analysis considering the development of water pressures is the next step in

improving the usefulness of the model.
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Fig. 5. Stress Strain curve for point B within the dara body.
(a) Rigid base, weakly nonlinear, (b) Flexible base, weakly nonlinear,
(c) Rigid base, moderately nonlinear, (c) Flexible base, moderately nonlinear.
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