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ABSTRACT:

The piping system is
resistance offered by the
excitations at the supports
denote the

A response analysis of piping systems to random support excitation is presented.
supported by primary structures or block foundations. The dynamic
supports are specified in terms of stiffress and damping. The

are non-stationary filtered white-ncige process. The filters
primary structures and the soil mass with evolutionary white-noise representing

bed rock motion. A space state transition matrix formulation is used to obtaim the response

in time domain.
piping
method of analysis

Using the propesed method of analysis, few exsmple problems for a typical
system are solved. Also, the responses for a particular example obtained by spectral
are compared with those obtained by the preposed method im order to

investigate the relative efficiencies of both methods.

1 INTRODUCTION

The piping systems are generally supported
at certain points by independent structres
(which are classified as primary structures)
including block foundations. If the piping
system is attached to more than one type of
supporting structres, excitations at
different points of supports produced due to
earthquake will be different. In addition,
the supports of the piping system may be
flexible and may also provide different
kinds of damping to the system, depending
upon the nature of the support. Thus, the
problem of seismic response of piping system
including multi-support

is a complex one
excitation, non-classical  damping and
support flexibility.

Seismic analysis of ©piping systems

subjected to multiple support excitations
commonly uses either time history (Chiba,
Koyanagi et.al.,(1989), Lee & Penzien(1983)}
or the response spectrum method (Gupta,
Jhaveri et.al.,{1984) & Sujuki, Sone(1389) ).

Unfortunately, these methods cannot take
into .account -cross correlation effect
between the multiple support excitatioms.

more rigorous stochastic seismic
should be employed for

Therefore,

analysis technigue

piping systems. For stochastic anaiysis of
piping sytems under random ground sotion,
spectral analysis in freguency domain can be
developed considering flexibility of
supports and their damping. However, when
the input ground motion is treated as non~
stationary random ProcCess, the
determination of evolutionary RS
response of the system with the help of
frequency domain analysis =may become
computationally prohibitive because of the
repeated application of spectiral spalysis at
each time step in the evolutiomary process.
In the present paper, an alternative time
solution for the problem is
presented. The input excitations at the
supports are provided in terms of the time
history of rms ground accleration, apd
a cross correlation fumction between the
multiple suppert excitstions. Using the
proposed method of amalysis, a piping system
is analysed for various types ol supporis
snd excitation conditioms. Also, the
efficiency of the propesed method of
snalysis is compared with that ef the
frequency domain method of amalysis.

domain



2 SUPPORT EXCITATION

the piping system are those
dynamic movements of the
They are defined by the
evolutionary rms acclerations which are
the outputs of filters excited by the
evolutionary white noise which is considered
as the seismic excitation at the bed rock
level. For the excitation points attached to
the ground, the filters represent the soil
media ; whereas for those attached to the
supporting structres, the filters represent
the combined soil and supporting systems.
The flexibility and damping of supports are
represented by spring-dash pot systems.
Seismic excitations which are represented by
evolutionary white noise are assumed to act
in the principal directions (u,v,w) of
earthquake (that is the componenets of
ground motions are uncorrelated) with shear
wave velocity incident at an angle w.r.t. a
set of global axes. The evolutionary rms
acceleration of each  component of
excitation is  specified. The spatial
correlation between the excitations at two
points is given by a frequency independent
correlation function (Loh (1985)).

Excitations to
produced by the
supporting points.

f;n = exp(-a|L|) cos 2n Ko L (1)

where a and Ko are parameters which depend
on the direction of wave propagation as well

as wave type, earthquake location and
magnitude. Values of 2.756 and 4.769 have
been given for a and Ko respectively (Loh
(1985)). L is the distance between stations
m and n measured in the direction of wave
propagation.

For time domain analysis, the filters are
augmented to each translational degree of
freedom associated with the support points
and represented by

Si+Ws (t) (2a)

. .
Xfi"'zgfi WEL X£i +WPEQ Xf£i

.

Si + 2§si wsi Si + wPsi Si = -Wi(t) (2b)
1,2,...3n1; 3n1 is the number of
freedom of the
piping systenm,

where i=
translational degrees of
supporting points for the

each support point having 3 d.o.f. The
output of each one of these filters is the
input excitation to the piping system

along the specified translational DOF. wsi,
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& wsi and Tei & Gy oare respectively the
damping  ratios
filter. xfi is the

frequencies and
characterizing the ith
of the ith

response filter which is the
input to ;he piping system. Si is an
intermediate response of the filter

Wi(t) 1is an evolutionary input white noige
of the form Pi(t).ﬁi which is different for
each supporting structure (Wi is a
stationary white noise and Pi(t) is
modulating time function). The vector of
evolutionary white noise {W(t)}, is having a
covariance matrix,

Tww(t,t4t) = [Q(t)] 5(1’) (3)

where 68(t) 1is the Dirac delta function,
[Q(t)l] is the  matrix of white noise
intensities or strengths of components.

By integrating Eq.(3), it can be seen that
[Q(t)] is the integral of the covariance
matrix of ({W}. Typical elements of the
covariance matrix of the evolutionary vector
valued white noise, (Eq.(3)) are given by
(considering Wi(t) as zero mean process)

Covlwi(t),w; (t)]=ﬁj[qii(t)qn (t)1% 8(c) (4)

where Jaij is the correlation coefficient
between support excitations at supports i &
j, and qii{t) is the evolutionary intensity
of ith evolutionary white noise.

The response of each filter xfi is
characterized by an evolutionary one sided
or time

power spectral density function,
history of rms response.
\PZ
Sx£i(w,t) = Ti(t) Sxei(w) (5)
oxti(t) = Yi(t).oxes (6)

in which Sxfi(w) is the power spectral
density function which depends on the
spectral value of white noise Wi and the
filter coefficients.

3 ANALYSIS OF PIPING SYSTEM

of a piping system
supported at different levels. The
supporting structures have different
dynamic characteristics. The interaction
between the piping system and supporting
points 1is represented by linear spring-

Fig.(1) shows a model



dashpot system with stiffness and damping
values denoted by Ks and Cs respectively.
Seismic excitations get modified and are
transferred to the piping system through
the supporting points. The dynamic d.o.f

are considerd as 3 translations (in X,Y,2

directions) at each node.

O Member No. DA
O Node No. ~

Supp. 2 3t
0
Supp. 3 A\ 1
Figure 1. Typical piping system
3.1 Equations of motion
The equations of motions for the piping

system in terms of absolute displacements
may be written in the following form :

[mu :I i'x;:} + [Cpll Cp12 il {):(y} +
m22 Xs Cp21 Cp22+Cs Xs
Kp11'Kp12 Xp( -
Kp21 Kp22+Ks Xs
0 1 (xe}, O (e} _ 0
[ Ks } +[ Cs :l - ip(t)% (1)

If the number of non support nodes and
support nodes are ni and n2 respectively,
then the size of {Xp} and {Xs} are 3n1 and
3n2 respectively.

In the above equations [m11], [Cp11] and
[Kp11] are matrices of pipe mass (diagonal),
damping and stiffness corresponding to
d.o.f. at nonsupport nodes with size of 3(n1

x n1). [Cpi2] and [Kpi2] are matrices of
pipe damping and stiffness representing the
coupling between non-support and support
degrees of freedom; [mz2], [Cp22] & [Kp221]
are matrices of pipe mass, damping and
stiffness corresponding to support d.o.f. of

size of 3{nz x nz). [Cs] and [Ks] are
matrices of support damping and stiffness
corresponding to support d.o.f. {Xs} is the
total displacements at support d.o.f. i.e.,
{Xs} = {u} +# {X¢} , where [u] is the vector
of relative displacement at the support
d.o.f. and {Xt} is the vector of prescribed
displacements in the directions of the
d.o.f. at the supports.

Cp1:  is assumed to be proportional to mi:
and Kpiiand 1s determined by assuming 5%
modal damping in first two modes{Clough &
Penzien(1982)). Coupling terms in damping
matrices ie., Cp1: and Cp2: are assumed to
be zero. Further, Cp2z is assumed to be much
smaller in comparison to Cs and is
neglected.

3.2 Solution of eq. of motion in time domain

For time domain formulation, the filter
degrees of freedom {Xz} and {S} are added to
the responce vector. Then, combining Eg. 2
and 7, a modified equation of motion can be
written in the following form

Y} + [CH{Y} + [KI{Y} = [F){W(t)) (8)

{Y} = Xs (9)
S (Ex1

The size of [M], [C] and [K] is of size
fix@ where ®=3(n1+3n2); {W(t)} is a vector of
evolutionary white noise which is the input
to the filters; [F] is a rectangular matrix
with size (®mx3n2), it contains the load
coefficients of the white noise vector.

The matrix [F] contains zero values as
lJoad coefficients corresponding to xp and

it contains diagonal blocks of 3x3
(matrix b), which contains the
coefficients of the evolutionary
white noise in the directions of global
axes, arranged in the lower 3mz X 3n2
segment of the matrix.

The filters are directed towards d.o.f. in
the global directions at the supports so
that

xs, and
matrix
component

-cos o« sin o 0
[b] = -sinee -cosx 0 (10)
0 0 1
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where  {W} is the vector of input
evolutionary white noise to the filters in
principal - directions u, v and w; u being at
an angle of a with the x-axis.

3.3 Space state formulation of dyn. system

For the space state formulation, the state

variables are considered as the
displacements and their derivatives.
Defining a space state vector Z, Eq. (8)
can be written in terms of 7 as

{2} + [A}{Z} = [B}{W(t)} (11)

Equation (11) describes a system of 2m
first order differential equations. The
solution of Eq, (11) in the time domain is
given by Mortensen (1987).

ot
z(t)=[¢(t,to)]z(to)+‘[¢(t,to)][Bl{W(t)}dt

t (12)
g(t,to) = exp{-[A](t-to)} (13)

where #(t,to) is the state transition matrix:

3.4 Evolutionary cov. matrix of state vector

If the excitation {W(t)} is evolutionary
Gaussian white noise, the response 7 is an
evolutionary Gauss-Markov random process
(Bryson & Ho (1969), Gasparini (1979)). The
covariance matrix of the state vector is
obtained in the following form, assuming
that the response vector at time (to) i.e.,

{Z(to)} 1is independent of the excitation
{W(t)} (Bryson & Ho (1969), Gasparini
(1979)).
Zzz(t) = g(t,to) Bzz(to) 8T (t,to)
t
+ | ¢(t,t) B Q(z) BTg’(t,t) dt (14)
to

If the mean of the exciting vector is
agssumed to be zero (i.e. Bw = 0), then
Eq.(14) fully describes the state of output
vector {Z(t)}. Thus, the covariance matrix
of response can be calculated at any time t
provided that the covariance matrix at any

previous time to, and the matrix of
strengths of the excitation (i.e. intensity
matrix. [Q(t)] of {W(t)}) are known,
Covariance matrix for member end forces is
determined from the covariance matrices of
the member end displacements and rotations.
The latter is obtained from the covariance
matrix of displacements (for condensed
d.o.f.) using standard procedure (Nigam
(1983)).

3.5 Calculation of Intensity Matrix Q(t)

Given the time  histories of rms responses
of filters (ie, the input excitation at the
support d.o.f.), the intensity matrix Q(t)
for the evolutionary white noise, which is
the input to the filters (or it represents
the bed-rock motion) is calculated. The
fictitious piece~wise linear strength
envelope (intensity function of white noise)
needed to match any prescribed time history
of rms motion can be directly obtained by
analyzing the filters before augmenting
them to the supports of the piping system.
The procedure is outlined in Ref.(Bryson &
Ho (1969), Hany (1991)).

4 NUMERICAL STUDY

With the help of the proposed method of
analysis, the piping system shown in Fig. 1
is analysed for numerical study. The piping
system is subjected to same type of non-
stationary excitation at each support, i.e.,
same filter (A) is used ‘for all support
points. The filter characteristics are
wg=25.0, we=10.0, 5¢=0.5 and 5¢=0.5. The rms
accelerations are assumed to be same for all
three components. The problem is solved for
two support conditions (flexibility and
damping) which are shown in Table 1.

The time histories of rms accelerations-
of the motion at the supports are specified
for principal directions of ground motions
which are assumed to coincide with x, y, and
z directions of the piping system and
assumed to be same for all supports. Also,
rms excitations in three principal directi-
ons are assumed to be same. The time history
of rms acceleration to major direction of
the motion is shown in Fig. 2. -
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Table 1. Support stiffness & damping values

Case Sup. Ksx Ksy Ksz Csx Cay Csz
No. No.
1 1 116.1 109.4 133.1 1.56 1.56 2.7
2 116.1 109.4 133.1 1.56 .56 2.7
3 116.1 109.4 133.1 1.56 1.56 2.7
2 1 1290.3 1215.9 1479.0 5.2 5.2 8.0
2 1290.3 1215.9 1479.0 5.2 5.2 9.0
3 1290.3 1215.9 1479.0 5.2 5.2 9.0
SRMS GROUND ACCELERATION (m/sec?)
26 /// N
2 / \\
1.6 / \
1/
0.5;/
o . e 4
o] 6 10 % 20

TIME (sec)
Figure 2. Evolutionary rms acceleration
The first five undamped frequencies of the

piping system for the support conditions
shown in Table 1 are given in Table 2.

Table 2. Undamped natural frequencies
(rad/sec)

Mode No. Case 1 Case 2
1 7.105 7.680
2 11.789 13.211
3 12.668 14.440
4 19.390 31.750
5 21,360 41,300

The results for the displacement response at
a selected node for two cases are shown in
Fig. 3. The responses for the first case are
greater than those for the second. This is

due to the fact that for the first case, ird
& 4th natural freguencies of the systems
happen to fall within the range of
frequencies where excitation energy is
significantly high.

sops™M5 DISPLACEMENT X- DIRECTION [

Case
Node 2 ~ !
0&  S———— e g L I——— SU——
00V
*
001k Casel
0.005+
0 5 0 % 2

TIME (s8c)
Figure 3. Evolutionary rms displacement in
x - direction

In order to evaluate the efficiemcy of the
proposed method of analysis, the responses
obtained by both freguency and time domain
analyses are compared for the example
problem (case 2) shown in Table 1. In the
frequency domain analysis, spectral approach
is used in which the input to the supports
are the evolutionary power  spectral
density functions of the outputs from the
filters attached to the supports. The
spectral analysis is performed at each time
step ( At taken seme as that for the time
domain analysis) in the evolutiomary process
and the time history of rms response are
determined. Note that for both time and
frequency domain analyses, same frequency
independent spatial correlation function as
given by Eq.1 1is used. The details of the
spectral method of analysis for piping
system with support flexibility and damping
non-stationary excitation are givem im
Ref. {Hany (1981))

Some typical results of the two analyses
are presented in Fig.4. [t is seen that the
frequency domain analysis provides higher
response. However, the difference is not
very significant (is of the order of 8%).
The reason for this difference is
essentially due to the difference in the
solution technigue employed for the two
pethods. The frequency domain sclution for

for
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non-stationary excitation is in fact based
on quasi-stationary approach which directly
provides the rms response at any instant of
time in the evolutionary process. The time
domain solution provides the response at
any time station treating the response as
Gauss-Marcov process.The rms response at any
instant of time t depends on the response at
previous time station and hence, the initial
conditions influence the response

The computational time required by time
domain method is 1150 sec as against 1615
sec required by spectral analysis (in ICL
3980 system).

. eRMS BENDING MOMENT (t.m)

requency domain
1.4 - Member 9 end 1 '/F

: /F\K’””””"‘”’

0.8
4 1

0 5 10 6 20
TIME (sec)

Figure 4. Evolutionary rms bending moment
about y-y axis

5 CONCLUSIONS

A time domain analysis for piping system
with flexible supports and with different
types of damping 1is presented for multi-
point non-stationary random excitations. The
method of analysis is based on space state
formulation with state transition matrix
used to determine covariance of response at
different time steps in the evolutionary
process of excitation. The piping system
represents typical secondary system which
is suported by primary structure at
different points including block foundations

directly attached to the ground. With the
help of the proposed method, some typical
problems of piping system are solved to
illustrate 1its applicability for different
cases.

required by the
less compared to
frequency domain

The computational time
proposed method 1is much
that required by the

spectral analysis. Therefore, the method ig’
proved to be more efficient for piping
systems subjected to non-stationary multiple
support random excitations.
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