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Seismic response analysis for jointed buried pipeline by using shell FEM model
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ABSTRACT: This paper presents a shell model FEM formulation of jointed buried
pipelines and results of their numerical calculations. An elastic thin shell
theory was used for an analysis in which the shell was supported by non-linear
axial,circumferential and radial soil springs. The axial and circumferential
springs were uniformly distributed in strength around the shell surface, but
the distribution of radial soil spring depends on the transversal movement of
pipelines. The present paper introduces a new technigue to analyse responses of
the shell with an arbitrary distribution of the radial soil springs. Seismic
wave propagation and dislocation of ground were assumed as input forces for the
shell pipeline. It was found that the stress of the pipelines has been reduced
considerably due to the effects of joints and that deformations in the cross
section of the pipe are an important factor for large diameter pipelines.

and displacements corresponding to
arbitrary expanded terms in,  the
loading Fourier series are expressed in
the followings.

{d:}

1 SHELL MODEL AND ANALYSING THEORY

1.1 Matrix displacement method for

shell analysis
= [uia(x)Cosn8 ., via{x)Sinné,
win{x)Cosn8 . Bialx)Cosn8 ] 7
{4} = {Qia(x)Cosnb , T1al(x)Sinnb ,
Hin(x)Cosn8 . Mia{x)Cosnf 37

It is well known in a thin shell theory
that if loadings are functions of sine
or cosine along the circumference, the
responses are also distributed in the
same way along that directions. Thus,
it is only necessary to consider an
amplitude in the analysis. For an
asymmetric case , the 1loading is
expanded into Fourier series and then

Yi(ls)
i)
responses are calculated toc each 2z
Fourier term (Sticklin et al.,L 1968, 810k Bedls)

Kameda et al. ,1988). We could obtained 5 3
responses by superposing the calculated N :
results. In Fig.l an arbitrary element \ X

eij in the cylindrical coordinate that
was employed in the analyses is Fig.1 Elements in generalized
illustrated. The generalized displace- coordinate S?/stem
ments and forces of an arbitrary nodal

circle i are given by Eq. (1}.

(2}

{diy="Lui, vi.wi, 8117 % Nx
(1)
{f1} =[Q.Ti Hi.Mi1" ‘ Nxe :
Ml
Where ui, vi and wi are displacements !

Fig.2 Directions of generalized

circumferential and radial )
forces in an element

directions respectively. Vi,Ti and Hi
are corresponding forces in those
directions. Mi and Pi are the moment
and rotation angle tangent tc the nodal
circle. The generalized ncdal forces

in axial,

Displacements in the element eij can be
shown as
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{ua} = Cua(x), Vn(X).Wn(X)»ign(X)] T (4)

Assuming the displacement to be a
polynomial function in the axial
coordinate, that is .

{Un}:

1 € 000 O 0 0 a,

001 £0 0 0 0 az

6 0001 £ F2 g3 :

0 0 0 0 0 I/L 2F/L3E2/L as

(5)

Where £=s/L is a dimensionless axial
coordinate, and s is a distance from
nodal circle i to the «circle
considered. Substitute ©boundary
conditions into Eq. (5) and coefficient
am, m=1,2,....,8 can be calculated.
Then the generalized displacements are
given by

{Un} = [NJ {d(]n}

The strain of the arbitrary surface
are easily obtained as

{€2) = [B] {di;n} 7
in which [B] is a 6%*8 matrix The
directions of forces in an element “are
shown in Fig.2. The forces can be
written as
{G'n} = [an.NBn,Nxen.Mxn.Man,Mxe "J(TB)

The generalized Hook's law here becomes
{0a} = [D] {ea} (9)

We have next equations by using the
virtual displacements principle for an
element eij assuming that inertia and
damping effects are negligible.

(6)

— 275l (&) (o )rdsdd + §275 (di) )T (f1)rd6

+12 f 5 {u}T(p}rdsd6 =0 (10)
Eg. (10) can be simplified as
~Jg8lea) {0o)ds+ 8 (disn) {f1)n)
+ 546 (Ua)}"(palds=0 (11)

{(2) Shell model with non-uniform
circumferential distribution of radial
soil spring

Fig.3 shows a shell model used for this
analysis. As can be seen a thin shell
model is supported by three kinds of
soil springs. It is supported by the
axial and circumferential shear springs
which are distributed uniformly on the
shell surface. But the radial spring is
distributed non-uniformly on it because
it causes the difference by the

pipeline's action of pulling or
compression forces. In short, there
exist no or very small pulling forces
between pipes and ground. Thus, radial
earth pressure is distributed like ag
shown in Fig.4. The earth pressure ig
neglected in the part of pipeline
surface which catch pulling force. To
consider this distribution, radial
springs are assumed to be non-
symmetrically distributed(see Fig.s).
Friction forces per unit length
associated with relative displacement
are illustrated in Fig.6. Soil springs
are assumed to be bi-linear as shown in

the figure. By using the Hooke's law,
earth pressure is written as
Pxna kx(Un"‘Un)
(pay ={POn} [ KO(Va-vo)  (12)
Pzn K’z(Wa~w,)
P A 0
Where
0 e o o o W"W>0
k' = (13)
Kz o o o e W—w<0
Axial spring = = =
Radial spring 7 :

Circumferential
spring
Fig.3 Ground-pipeline system

in shell model

Direction of ground
displacement

ol

Fig.4 Actual radial Fig.5 Distribution of radial

earth-pr spring corresponding to
pressure shell model

Ground displacemem

Consider the ground movement downwards
first, kz' Dbeing rewritten as

n/2<8 <3m/2

0 o ¢ ¢ o

k' = (14)

—-n/2<6<mn/2

kzccno

Thus the radial earth pressure can be
rewritten as

pz = EWu(X)' Wa(X)J k'zCOSe (lS)
where kz'cosg is distributed same as
in Eq.(13), so it can readily be

approximated by finite Fourier series
as
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K'z cos® = kz { 1/7+cosb J2+(-1)%* 2/ x

Zcos2k 8 /(4 k2-1)} (16)
Considering the harmonic number merely
up to 2k=10, we could obtain a good
approximation. By substituting
Eqs. (6),(7),(9) and (12) in Eq.(ll)
the resulting equation comes out to be
as followings

{f!jn}"’ {Pn} = ( [Ka] "'[Ks]) (d!jn}
{(17)

is a stiffness matrix of
the pipeline. It is quite difficult to
calculate [Kn] by direct integration,
but it can readily be evaluated by
numerical integration. (Ks] is the
stiffness matrix due to the soil
springs. {fijn} is the nodal force
vector, {Pn} is the loading vector.

In which [Kn]
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Fig.6 Soil springs related with
relative displacements

(3) Joint elements, global relations
and boundary conditions

Goodman's joint elements were
considered as- shown in Fig.7. The
technique is that forces of the joint
element are calculated from relative
displacement at the both ends of the
shell elements. The relative
displacement vector is expressed as

Eq. (18) in which nodal displacements
are used.

{uea} = [Lel {dija} (18)
A stiffness matrix [C] connects the

forces of the joint element with the
nodal displacements

{fi/a} = [C] {uen) (19)
= [C] [Lel {dl]n}.‘ = [K;1 {dia}
We multiply both sides of Eg. (1%) by

[ Al and integrate it from 0 to 2mas
shown in Eg. (20).

gofg”mf-n TLA"] rd6 {fiyn)

=2 FETLA"1 T [K,] [A®] rd6 {dia)
n=0" 0

[A*) =disg [cosnf .sinn8 ,cosnb ,cosné ,

cosn8 ,sinn8 ,cosnf ,cosnf ]

z
--\‘ K
v x

wilHI) L yiCTH) Goodman's joint
fine element

{(20)

Bi(Mi) ui(@i)

Fig.7 Shell elements and joint element
in generalized coordinate system
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Fig.8 Axial force related with refative
displacement of joint element

By assuming Eq. (17) corresponding to
all elements, we have a global relation
by putting Eg.{(20) in it. One example
of the joint character is shown in
Fig.8.

1.2 CALCULATED RESULTS AND DISCUSSION
(1) Response calculations under SV wave

Response values of a jointed or
continuous pipeline subjected to SV
wave with an amplitude of 2.5 cm, 100m
wave length and an incident angle of
zero degree to the x direction are
presented in Figs.9-14 along the
stretch of the pipeline. Dimensions of
buried pipeline used for calculations
are shown in Table 1. Response values
of axial stress in the jointed pipeline
by shell theory is known to be smaller
than those by beam theory as shown in
Fig.9. Axial stress for the continuous
pipeline shows almost same value
between two analytical methods. Fig.l0
is the distribution of pipe
displacement along the pipeline which
shows the pipeline follows ground
movement when it has mechanical joints.
Fig.ll is a distribution of radial
displacement of the pipe section. The
radial displacement by shell theory is
smaller than those by beam theory and
the radial displacement in compression
area in ground motions is larger than
tension area due to non-uniform
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distribution of soil springs. Figs.l2

i i i i Shell th i
and 13 show distributions of soil T — Sheﬂhmn:im:m

constants in axial and radial - T2 Beamneoy oo
ggigzl:gtions at the final step .of .g, Bearn theory with joint
numerical calculations by the loading g L o
incremental method. The section where g |z . P
soil spring shows small vaJ:ue g - y —
corresponds to slip areas petwgen pipe 'S N
and ground. Fig.l14 is distributions ?i

of pipe rotation along pipeline. The Longitudinal direction of pipeline

figure indicates that‘bgnding of pipe
itself is relieved by joint characters.
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Table | Dimeasion of FRPM Fig.11 Distribution of radial displacement along pipeline

Diameter(mm) 800 Pipe lfnglh(cm) 500
Thickness(mm) 20 Young's Medulus
Cross area(mm 2) | 5314 (kgf/cm 2) 90,000
Momeat of Poison's ratio 02
_inertia(mm ¢) 126
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Longitudinal direction of pipeline Fig.12 Distribution of axial spring constant along pipeline
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Fig.9 Distribution of axial stress at pipe crown along pipeline P
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Fig.10 Distribution of axial deformation along pipeline

(2) Response calculations under ground
dislocation

Figs.l15-21 are distributions of
response of the buried jointed or
continuous pipelines with same
dimensions as mentioned above when it
is subjected to ground dislocation such
as fault movements at center position
of the pipeline with an amplitude of 5
cm and a dip angle of 45 degrees.
Axial stress both in 3jointed and
continuous pipelines by shell model is
much smaller than those by beam
theory as shown in Fig.l5. Fig.l6 is
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i Longitudinal direction of pipeline

Radial spring constant(kg/em n

bt . —
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Fig.14 Distribution of rotation angle along pipeline
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Fig.15 Distribution of axial stress at pipe crown along pipeline
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Fig.16 Distribution of circumferential stress
at pipe crown along pipeline
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Fig.17 Distribution of axial deformation along pipeline
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Fig.18 Distribution of radial displacement along pipeline
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Fig.20 Distribution of axial spring constant along pipeline
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Fig.21 Distribution of radial spring constant along pipeline

the distribution of circumferential
stress which can not be obtained by
beam theory. The value of the
circumferential stress can not be
negligible compared with axial stress.
Figs.17 and 18 are distributions of
axial and radial pipe displacements
along pipelines respectively. The
difference of the pipe displacement
calculated by shell or beam theory is
distinct in the radial displacement due
to consideration of non-uniform
distribution of soil spring. Rotation
of pipe elements is shown in Fig.1$.
Distributions of soil spring constants
are shown in Figs.20 and 21 for axial
and radial directions. More slippage
can be seen in axial direction compared
with radial ones.



1.3 CONCLUSIONS

pPresent paper treats seismic response
analytical method for a buried jointed
or continuous pipeline with relatively
large diameter by using thin shell
theory. Numerical calculations were
performed for $800mm FRPM Dburied
pipelines when it 1is subjected to
seismic wave and/or ground dislocation
and results were compared with ones by

beam theory.

(1) A computer program has been
developed for the response calculation
of buried jointed or continuous
pipeline subjected to seismic wave
and/or ground dislocation by using a
thin shell theory.

(2) The present shell model can
calculates the distortion of cross
section of pipeline and circumferential
stress which could not be obtained by
beam theory. Further, the shell model
can take account of the distribution of
real earth pressure around the cross
section of pipes.

(3) Jointed pipelines can absorb ground
deformations much more than continuous
pipelines indicating that the jointing
is one of the effective countermeasures
under seismic environments.
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