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Fluid-structure interaction analysis for spent fuel storage structures
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ABSTRACT : In this paper, liquid sloshing effects in rectangular storage structures for spent fuel under
earthquake loadings are investigated. Eulerian and Lagrangian approaches are presented. The Eulerian
approach is carried out by solving the boundary value problem for the fluid motion. In the Lagrangian
approach, the fluid as well as the storage structure are modelled by the finite element method. The fluid
region is idealized by using fluid elements. The (1x1)-reduced integration is carried out for constructing the
stiffness matrices of the fluid elements. Seismic analysis of the coupled system is carried out by the response
spectra method. The numerical results indicate that the fluid forces on the wall obtained by two approaches
are in good agreements. By including the effect of the flexibility of the wall, the forces due to fluid motion

can be increased very significantly.

1 INTRODUCTION

The safety of the spent fuel storage structures is ex-
tremely important, because the failure of the struc-
tures, containing cooling water and spent fuel which
are of high level in radioactivity, may have disas-
trous consequences on lives and environments. Seis-
mic excitation. is the most important force to be
considered in the design of those structures. The
objective of this study is to develop efficient meth-
ods for seismic analysis of the structures. The study
focuses on the fluid-structure interactions including
the effect of the wall flexibility of the structures,
There are two types of approaches for the so-
lution of the coupled systems of the structure and
fluid. One is the Eulerian approach, in which the
fluid motion is formulated in terms of velocity po-
tential : see Housner(1957), Veletsos(1974), Ep-
stein (1976), Balendra(1982), Haroun(1983 , 1984)
and Yun (1986). The other is the Lagrangian ap-
proach, in which the fluid may be treated as a solid
with zero shear modulus : see Sundqvist(1983) and
Chen(1990). In this study, both Eulerian and La-
grangian approaches are presented. The Eulerian
approach is carried out by solving the boundary
value problem for the fluid motion and applying
Navier-Stokes equation for the hydrodynamic forces
on the wall. In the Lagrangian approach, the stor-
age structure and the contained fluid are modelled
by the finite element method, utilizing a general
purpose structural analysis program ADINA(1984).
The fluid region is idealized by using the fluid ele-
ments. The gravity effect on the sloshing motion is
represented by using a series of equivalent vertical

springs along the free surface. The (1x1)-reduced
integration is carried out for constructing the stiff-
ness matrices of the fluid elements. Dynamic analy-
sis of the coupled system is carried out for the earth-
quake loadings by the response spectra method.

The numerical results of several example cases
indicate that the fluid forces on the wall obtained
by two approaches are in good agreements. It has
been also found that the effect of the flexibility of
the wall is very important. By including the effect,
the base shear and base moment of the structure
can be increased very significantly.

2 EULERIAN APPROACH

2.1 Modelling of the rectangular storage structures

The storage structures are assumed to be rigidly
mounted onto the bases on the ground and partially
filled with fluid as shown in Figure 1. The behaviors
of the structures during earthquake are basically 3-
dimensional. However, for the computational sim-
plicity, the 2-dimensional structure as shown in Fig-
ure 2 is considered in this study. The walls of the
structures are modelled by using beam elements,
The equivalent bending rigidity of the wall is de-
termined in such a way that the fundamental nat-
ural frequency of the 3-dimensional structure may
be maintained. In the actual analysis, only a half
of the fluid-structure system is considered, because
the motion of the system under horizontal earth-
quake loading is anti-symmetric with respect to the
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vertical plane at the center.

2.2 Velocity potential and hydrodynamic forces

For the irrotational flow of an incompressible invis-

cid fluid, the velocity potential, ¢(z, z; ), satisfies

the Laplace equation in the fluid region.
Vi(z,z;t) =0 in (1)

Then, the fluid-wall boundary conditions can be ex-
pressed as follows:

bo(£L,z:t) = W(z;t) (2)
$4(z,0;) =0 ®3)
$.:(z, H;t) = &(a;1) (4)
pd(a, Hit)+pgé(z;t) =0 (5)

where £(z; ) is the elevation of the free surface over
the mean surface level; W(z;t) is the horizontal dis-
placement of the wall; ¢ . represents §¢4/8z; p is
the mass density of fluid; and g is the acceleration
of gravity.

The general solution for the Eq. (1), which sat-
isfies the boundary condition on the tank wall, Eq.
(2), can be expressed as,

#(z,z;t) = i An(z;t)sin A,z + :cW(z; t) (6)

n=1

where A\,=(2n—1)r/(2L) and A.(z;t) is the time
varying coefficients of the n-th term in the sine
series which is to be determined using the other
boundary conditions. The free surface elevation can
be also expressed in terms of the sine series as,

E(z;t) = inn(t) sin Anz (7

n=1

Figure 1. Rectangular storage structure.

where 7, (t) represents the generalized free surface
amplitude associated with sin A, z.

Substituting Egs. (6) and (7) into Eqgs. (1), (3),
(4) and (5), one can obtain expressions for A,(z;t)
in terms of W(z;t) and n,(t). The horizontal dis-
placement of the wall is represented by using third
order polynomial of z within each beam element.
Consequently, the deformation of the whole wall
section is represented by much higher order terms.
However, it is not practical to use the same inter-
polation functions to describe the fluid boundary
condition along the wall, because the liquid motion
is mostly associated with the low frequency vibra-
tion modes. Hence, an approximate shape which is
& third order polynomial function through the depth
of the contained liquid is used to obtain A4,(z;t) in
this study. The approximate shape, W (z;t), is de-
termined by the least square fitting of the horizontal
displacements of the beam at the nodes, {w(t)}, as
follows,

W(zt) ~ W(zt) = {P(2)} [R{w(®)}  (8)

where {P(z)}"=<1,z,22,2° > and the coefficient
matrix [R] can be obtained from the z-coordinates
of the nodes below free surface.

Once the solution for A,(z;t) is obtained, the
velocity potential can be expressed into two parts
as,

8z, 5i1) =6, (2, () + bz, [ (n(r)ar) (9)

where ¢, and ¢_ may be considered as the impul-
sive and the convective components of the velocity
potential, respectively.

Substituting Eq. (9) into the free surface bound-
ary conditions, one can obtain the relationship be-
tween {n} and {w} as,

(M)} + [Kps){n} = [SH{w} (10)

where diagonal matrices [M,] and [K/] can be in-
terpreted as mass and stiffness matrices associated

_ € _
fluid region Q 3 H
L2
} =
S S S/ /7
e db ]
I 2L 1
Figure 2. 2-dimensional model of a rectangular

storage structure.
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with the free surface motion; and [S] is the coef-
ficient matrix of the exciting force associated with
the wall motion.

Using Eq. (9) and Navier-Stokes equation, the
hydrodynamic pressure exerted on the wall can be
expressed in terms of velocity potential. Then, us-
ing the virtual work principle, the nodal hydrody-
namic force vector, {F'}, can be obtained as,

{F} = —[M.){%} - (S]" {n} (11)

where [M,] is the hydrodynamic added mass matrix
associated with the horizontal movement of the lig-
uid; and [S] is the matrix relating the horizontal
force on the wall with the free surface motion. It
can be easily shown that the matrix [S]in Egs. (10)
and (11) are identical.

2.3 Equation of motion of fluid-structure system

Combining Egs (10) and (11), the equation of the
fluid-structure system can be obtained as,

5 4 )i
=S My ||

K. 5 |(dY_[ER

+[0 KHJ{U}—{O} (12)
where {d} is the nodal displacement vector of the
wall; {R.} is the reaction vector at the base; [M,]
and [S] are the matrices corresponding to [M,] and
[S] but with proper dimensions. Decomposing the
displacement vector {d} into the components at the
base {d,} and at the free nodes {d,}, Eq. (12) can
be rewritten as,

My, M, 0 dy
[ M!_qb Myw 0 ] Jw
—Sb —Sw M!! 77

Ky Ky '?: dy R.
Mwb Mww S: d‘” = 0 (13)
0 0 Ky ]Un 0

From Eq. (13), it can be observed that the coef-
ficient matrices are unsymmetric due to the pres-
ence of the matrix [S] representing the coupling ef-
fect between the surface wave motion and the wall
motion. Therefore the extraction of the eigenval-
ues and eigenvectors as well as the solution of the
coupled equation becomes extremely difficult. Ow-
ing mainly to the difficulty, the coupling terms have
been commonly omitted in many investigations: see
Veletsos(1974) and Haroun(1983). In the present
study, however, Eq. (13) is transformed by premul-
tiplying a matrix [T as

My My, 0](ds K
KuwMpiMuy Kuw 0 [ dy p+ | KuwwMgl My

4

gwMJ,},Mwb - 55 0 M/f 7 SwMJ‘}Jwa

4977

Kiw 5 AR A
KM Kuww — KuwMZLS, |{dwp={ 0 (14)

SuMZlKuw Kip+ SuMZISL LN 0

and
I 0 0

[T)=1|0 I\:wwMu’"}, 0 (15)
0 S.,Mzl I

By expressing the displacement vector of the free
nodes, {d,}, as the sum of the ground movement,
{ds}, and the relative displacement to the ground
movement, {d,}, i.e.,

{do} = [L,1,, 1" {ds} + {d} (16)

the following equation with symmetric matrices can
be obtained from the second and the third rows of
Eq. (14),

[ wa 0 ] Jr + I\:WWMJJ:KWW
0 My )4 SuMg Ky

K,wMLS, d .
wwMywOw _ P .
Ky +8.M3)5, ] { 77} (M{ds}  (17)

where [M,] is the effective mass matrix for the base
movements as,

waM‘;ul,;wa + wa(Iv I, R I]T

M.] = (18)

SuM;IMy, - 5,

From the Eq. (17), the natural frequencies and
the mode shapes can be readily computed. Then,
the seismic response of the fluid-structure system
can be calculated by the response spectra method
utilizing mode superposition.

3 LAGRANGIAN APPROACH

In this approach, the contained fluid as well as the

-storage structure are modelled by the finite element

method. A general purpose structural analysis pro-
gram ADINA is utilized for this analysis. As in the
Eulerian approach described in the previous section,
the fluid-structure interaction analysis is carried out
by using 2-dimensional model. Plane strain condi-
tions are assumed for the analysis against the hori-
zontal earthquake excitations. The walls of the stor-
age structure are modelled by using 4-noded solid
elements. The fluid region is represented by utiliz-
ing 4-noded fluid elements.

The fluid elements used are equivalent to the
solid elements with zero shear modulus but with an
approximate bulk modulus for the compressibility
of the contained fluid. The (1x1)-reduced integra-
tion is carried out for constructing stiffness matrices



of the fluid elements, since the (2x2)-normal inte-
gration of the 4-noded fluid elements causes over-
estimations of the stiffness of the fluid elements.
The (1x1)-reduced integration gives constant pres-
sure within an element and no stiffness against de-
formation shape without volume change. Conse-
quently, spurious zero energy modes may be pro-
duced in the modal analysis. In this study, the spu-
rious modes are identified based on the results of
the modal analysis, and they are disregarded in the
dynamic response analysis.

The effect of the restoring force on the free sur-
face due to gravity, which is associated with Eq. (5),
can be represented by a series of vertical equivalent
springs. When a quiescent free surface is disturbed
by a vertical displacement, &, the restoring forces,
f, due to the pressure change and the stiffness of
the corresponding equivalent spring, k, can be eval-
nated as

(19)
(20)

=-pg{dS
k=fl¢=-pgdS

where dS is an infinitesimal area of the free surface.

The relative motion of the fluid along the wall is
allowed only in the tangential direction to the wall
as shown in Figure 3.

for free surface
/ boundary cond.

f—

Fluid Elements

sliding ——"
interface &

117/

Figure 3. Finite element modelling for a flexible

wall case.

4 NUMERICAL EXAMPLE AND DISCUSSIONS

4.1 Properties of ezample cases

Three cases of reinforced concrete structures for the
storage of spent fuel are investigated. The widths
of the structures(2L) are taken as 12, 30 and 60m,
respectively. The wall thickness(h) is taken to be
1.2m for three structures. The fluid is assumed to
be filled upto 13m above the base.

The material properties of the concrete storage
structures are : Young’s modulus(E)=19.6 GPa,
Poisson’s ratio(r) =0.2 and mass density(p,) =2.4x
102K g/m3 The properties of fluid elements are:
bulk modulus(K) =2.0G Pa, mass density(p)=1.0x
103K g/m3.

For the seismic response analysis, the design re-
sponse spectrum for the horizontal direction rec-
ommended by US NRC Regulatory Guide 1.60 is
used. The peak ground acceleration is taken as 0.2g,
and the modal damping ratio is 0.5 percent for each
mode.

4.2 Free vibration analysis

For the seismic excitations in the horizontal direc-
tion, only the ant-isymmetric modes of the fluid
sloshing and the structural motions contribute to
the dynamic response. The frequencies of the anti-
symmetric sloshing modes computed for three struc-
tures are listed in Table 1. Good agreements can
be observed between the results by different ap-
proaches. It is also found that the effect of wall flexi-
bility to the sloshing frequencies are negligible. The
natural frequencies of the anti-symmetric structural
modes are also evaluated. The added mass effect is
included in the analysis. The first two frequencies
are shown in Table 2. Fairly good agreements be-
tween the results by the Eulerian and Lagrangian
approaches can be observed.

From the results of the Lagrangian approach uti-
lizing the finite element idealization both for the
structure and the fluid, the first 29 modes are found
to be the sloshing modes. The first two antisymmet-

Table 1. Frequencies of anti-symmetric sloshing modes ( Hz )

Width Natural Rigid wall Flexible wall
Frequency Eulerian Lagrangian  Housner Eulerian  Lagrangian

12m wy 0.26 0.26 0.26 0.26 0.26

wWa 0.44 0.36 0.44 0.44 0.36
30m wy 0.15 0.15 0.15 0.15 0.15

ws 0.28 0.24 0.28 0.28 0.24
60m wy 0.09 0.09 0.09 0.09 0.09

ws 0.19 0.20 0.19 0.19 0.20
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ric structural modes are the 31** and 33" modes
as shown in Figure 4. The corresponding natural
frequencies are found to be 3.0 and 17.0 Hz for the
structure of 30m wide. These values are slightly less
than those( 3.2 and 19.9 Hz ) obtained by the Eule-
rian approach. The discrepancies may be caused by
different ways of modelling the wall structures: i.e.,
beam elements in the Eulerian approach and plane
strain elements in the Lagrangian approach.

Table 2. Frequencies of anti-symmetric structural
modes. ( Hz)

Width  Natural Eulerian  Lagrangian
Frequency
12m witr 3.3 2.8
witr 20.7 18.4
30m witr 3.2 3.0
w3t 19.9 17.0
60m witr 3.3 3.0
w3t 20.0 16.7

4.3 PFree surface elevation

Table 3 shows the maximum free surface elevation
obtained by the Eulerian and the Lagrangian ap-
proaches. Maximum elevation mainly depends on
the first sloshing mode. The effect of the wall flex-
ibility on the sloshing motion is found to be negli-
gible. The results obtained by the Lagrangian ap-
proach are in good agreements with those by the
Eulerian and the Housner’s methods.
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Table 3. Maximum free surface elevation ( m )

Width  Eulerian  Lagrangian = Housner
12m  0.91 (0.91) 0.97 (0.96) - (1.27)
30m 1.14 (1.13) 1.14(1.13) - (1.29)
60m  1.13(1.13) 1.12(1.12) - (1.04)

Note : The values in the parentheses are obtained
from rigid wall cases, the others from flexible wall
cases.

4.4 Base shear and base maoment -

The maximum shear and bending moments hydro-
dynamically induced at the bases of the walls are
evaluated, and the results are shown in Tables 4 -
5. Comparisons with the results by the Eulerian ap-
proach indicate that the convective components are
evaluated fairly accurately by the Lagrangian ap-
proach, while the impulsive components seem to be
underestimated, particularly for the cases with rigid
walls. However, for the cases with flexible walls, the
discrepancies are found to be less than 5 percent. It
is noted that the maximum base shears and bend-
ing moments for the flexible wall cases are about
3 times greater than those for the rigid wall cases.
It is because the fundamental natural frequencies
of the wall structures are in the range, where the
spectral accelerations of the input response spec-
trum are about 5 times of the maximum ground
acceleration.

? = :
I I i
11 11 11
=+ HEH
llll‘[l]l lLlll T TLITT 111117
3™ mode
- - 1
l -
|
(AN 1.1
33" mode

Figure 4. Anti-symmetric mode shapes for the shoshing and the structural modes of a flexible wall.
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5 CONCLUSIONS

From the example analysis, it has been found that
the Lagrangian approach utilizing the finite element
modelling for the structure and the contained fluid
yields very good results for the hydrodynamic forces
on the wall, compared with those obtained by the
more conventional Eulerian approach. Consider-
ing the versatility of the finite element modelling,
the Lagrangian approach is judged to be a possible
alternative way for the fluid-structure interaction
analysis, particularly for the storage structures with
complex geometries. It has been also found that the
effects of the wall flexibility can be very important
for the seismic analysis of the storage structures.
By including these effects, the hydrodynamic forces
on the wall may be amplified as much as three times
of those corresponding to the rigid wall cases.
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Width Eulerian approach

Lagrangian approach

Housner method

Convec. Impul. SRSS Convec. Impul. SRSS Convec. Impul. SRSS ABS
12m 33 359 - 361 31 354 355 - - - -

( 33) (112) (117) ( 31) ( (104)  ( 33) ( 127) ( 131) ( 161)
30m 90 543 551 90 527 535 - - - -

( 90) (164) ( 187) ( 89) ( 127) ( 156) ( 90) ( 187) ( 208) ( 277)
60m 120 546 559 117 518 531 - - - -

(120) ( 165) ( 204) ( 117) ( 106) ( 158) ( 109) ( 195) ( 223) ( 304)

Note : The values in the parentheses are for the rigid wall cases, the others are for the flexible wall cases.

Table 5. Maximum base moments ( KN-m )

Width Eulerian approach

Lagrangian approach

Housner method

Convec. Impul. SRSS Convec. Impul. SRSS Convec. Impul. SRSS ABS
12m 312 2522 2541 298 2497 2515 - - - -

( 310) ( 609) ( 683) ( 207) ( 522) ( 601) (328) ( 631) ( T11) ( 959)
30m 668 3425 3490 657 3324 3389 - - - -

( 666) ( 848) (1078) ( 655) ( 663) ( 932) (694) ( 925) (1156) (1619)
60m 810 3334 3431 783 3168 3263 - - - -

( 810) ( 844) (1174) ( 781) ( 584) ( 975) (784) ( 961) (1241) (1745)

Note : The values in the parentheses are for the rigid wall cases, the others are for the flexible wall cases.
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