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Damage assessment of existing bridge structures with system identification

W.-J.Kim & A.H.-S.Ang
University of California, Irvine, Calif., USA

ABSTRACT: A method to estimate the damage of existing bridge structures is developed using results of system
identification. Dynamic behavior of damaged structures is represented by a nonlinear hysteretic moment model. Structural
properties can be evaluated through system identification. To incorporate the variability of the structural properties and the
effects of stochastic excitations, response statistics are obtained through random vibration and damage is represented as
random quantities. A numerical example is illustrated for a bridge structure under different ground excitations.

1 INTRODUCTION

Damage has been observed in many bridge structures
during recent earthquakes. Damage, however, is still
determined by intuition, experience and judgement of
engineers or as a function of simple quantities, such as
maximum deformation or change of stiffness. Considering
that damage is a nonlinear function of the excitation, a
more systematic approach is essential in damage
estimation, that includes in particular the nonlinear
characteristics of a structure.

A method for damage estimation incorporating system
identification is suggested. Structural response is analyzed
through random vibration under earthquake excitations.
Structural properties of an existing structure and their
respective uncertainties are determined through system
identification. In particular, the extended Kalman filtering
algorithm is used to identify the structural parameters. For
this purpose, a hysteretic model is developed to describe
the nonlinear behavior of a moment-resisting frame, and
the corresponding parameters of a system are obtained
through filtering using measured excitation and response.
With these identified parameters, a structure is analyzed
and damage is assessed at locations where damage hinges
are expected to occur, Damage is represented in terms of
damage indices at the hinges from which the overall
damage index of a bridge is determined.

The proposed method is applied to a horizonatlly circular
bridge as a numerical example. The structural properties
were determined from the identified parameters;
degradation of properties relative to those of the
undamaged structure is included. The calculated damage
index is compared with the observed earthquake damage.
Also, fragility curves are obtained to illustrate the potential
damage of similar structures under earthquakes of different
ground intensities.

2 DAMAGE MODEL FOR BRIDGE STRUCTURES

2.1 Discretization of Bridge for damage analysis

Bridges are usually constructed of flexural members or
frame systems. Moment-curvature relations govern the
nonlinear behavior of a structure and, therefore, may be
modeled as moment-resisting frames for damage assessment
purposes. Damages may occur anywhere along a member
or structure. However, for mathematical simplicity,
damages may be idealized as concentrated at appropriate
nodes where damages are likely to be high. Accordingly,
a discretized model for bridge damage analysis can be
represented as nodes and beam elements as shown
Fig. 1, and damages are concentrated and defined at the
nodes.

For damage analysis, plastic hinges are assumed to occur
at the nodes under strong excitations, whereas the beam
elements will remain elastic. Accordingly, damages are
calculated only at locations where potential hinges may
occur. For the bridge shown in Fig. 1, three nodes are
defined at each beam-column joint, at which different
levels of damage may be observed at these locations.
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Figure 1. Bridge model for damage analysis
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2.2 Model for structural damage

Damage of a reinforced concrete member using moment-
curvature relation will be expressed in terms of a damage

index
’ IM yéU ( )

where, ¢)y = maximum response curvature under an
earthquake; ¢y; = the ultimate curvature capacity under
monotonic loading; M, = yield moment; dE =
incremental dissipated hysteretic energy; fg is a
non-negative constant which is a function of steel ratio,
axial force and stirrup ratio given as

= [0.37no + 0.36(k, — 0.2)%]0.9°~ 2)

in which, k; is normalized steel ratio and given as &b
and ng is the normalized axial stress given by w-r

To include the structural damage capacity, D,, damage
of areinforced concrete member can be described as (Park,
et al, 1985)

D
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where, D; = damage index ratio for node i of a structure;
D, = structural damage; D, = ultimate damage capacity
with up, = 1.0 and op, = 0.54. To incorporate the
uncertainties in the random response, the maximum
curvature and hysteretic energy are represented as random
quantities; the mean and variance of damage at each node
can be calculated as

(4)
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2.3 Response statistics

To calculate the damages of the nodes, the means and
variances of the respective maximum curvatures and
dissipated hysteretic energies are necessary. For this
purpose, the following are required: a nonlinear model for
bridge structures, a ground motion model, and a method
for response analysis.

1. Nonlinear Model — The equations of motion including
the nonlinear restoring forces can be written as

IMI{X} + [CHX)} + {Fwe} = -[M{ 7}z,  (5)

where, [M] = mass matrix; [K] = stiffness matrix; {J} =
direction vector; and %, = ground acceleration. The
nonlinear force vector, {Fyp}, is defined from the
moments at the nodes to incorporate the damages and given
as,

{Fne} = KX} + (1.0 ~ o)[T)[Kal({z} - {¢})  (6)
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where, [T] is a matrix transforming moments in local
coordinates to forces in global coordinates, and [K] is the
element stiffness matrix. Observe that « = 1.0 in Eq.6
indicates linear restoring force and that nonlinear forces are
calculated from the locations where plastic hinges are
expected to occur. The curvature at each node, {¢}, can
be obtained from the modal displacement vector, and the
hysteretic component, z, can be described as

_ A$ = v{BIdllzI" 'z + 421" )
n

where, «, 8, v and n are constants related to the hysteretic
restoring force characteristics; A, » and 7 are parameters
related to degradation and are functions of the dissipated
energy (Sues, et al, 1985).

In this study, the state vector approach is used to solve
the equations of motion and mode superposition is adopted
to reduce the number of variables. In such a case, the
equations of motion are changed to,

(W) = [-%w]{W}-[w’]{W}—(l—a)%{%U’\’al({z}

—-{e)-{T}z, ®)

where, [T'] is modal participation vector; ¢ is damping ratio
and o is the natural frequency of the structure.

2. Modeling of Ground Motion -- Earthquake ground
motion is modeled as a zero mean filtered Gaussian shot
noise with a Kanai-Tajimi spectrum. To model the
non-stationarity in the ground motion, its intensity is
modulated by the Amin-Ang type envelope function (Amin
and Ang, 1968).

3. Random Vibration Analysis — Using equivalent
linearization (Baker and Wen, 1981), the underlying
nonlinear-hysteretic random vibration problem is reduced
(Kim and Ang, 1992) to the solution of the following
stochastic differential equation:

d
75=GS+5G" +B (9)

where: S = E[y(t)y(t)T] is the covariance of the response,

ii = 0 except By, = I(t)
1(6 = intensity function of excitation, and
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and, Xgs ig and iq are di§placemem, velocity and
acceleration of the soll, respectively; w and w are modal
displacement and velocity of the structure.

4. Evaluation of Response Statistics — The mean and
variance of the maximum curvature can be obtained
assuming that the nonstationary peak has a Weibull
distribution (Yang and Liu, 1981). The mean hysteretic
energy is obtained by solving Eq. 9, whereas its variance
requires the solution of another differential equation (Pires,
et al, 1983). Approximation can also be obtained (Kwok
and Ang, 1987) showing that the C.0.V. is fairly constant
around 0.2.

2.4 Global damage index

The global damage is necessarily a function of the damages
of the nodes. In general, however, this functional
relationship may be expressed in terms of probability.
Specifically, the event that the global damage is greater than
damage level d can be defined as

(Dr > d)=U(D; > d) (12)

where, Dy is the global damage of the structure; and D; is
the damage index at node i, where U stands for the union
of events.

The probability of the global damage exceeding the
damage level d is then expressed as

P(Dr > d) = P[U(D; > d)] (13)

The required probability may be evaluated using the
geometric mean of its second-order bounds, which can be
written as,

k -1
P(E;) + Y maz[{P(E:) - Y P(E:E;)}:0] < P(Dr > d)

i=2 j=1

k k
P(Dr>d)< Y P(E)-
=1

z mazP(E;E;)
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(14)

where,

P(E;) = P(D; > d) (15)

in which i denotes the ith node where damage hinges are
expected to occur.

To calculate P(E;), the performance function is defined
considering the maximum curvature and hysteretic energy.
Using the damage model defined in Egs. 1 and 3, the
performance function can be written as

w(X) =

aX; + Y}
-4 (18)

where, a= L b= w2, Xi = éu,.Y, = [dE, D =D,

and.qistlh)emioofdxmgereizﬁvemthemum' damage
» Vg

The safety index for each node is calculated on the basis
of Eq. 16 and the correlation coefficients between nodes are
also obtained. Assuming log-normal distribution for the
global damage, the two parameters \ and [ of the
log-normal distribution can be evaluated using any two
probability levels obtained above.

On the basis of the derived lognormal distribution for the
global damage, its median and logarithmic standard
deviation can then be evaluated.

3 SYSTEM IDENTIFICATION OF STRUCTURAL
PARAMETERS

The dynamic equations of motion can be converted into 2
set of nonlinear state equation as,

(X} = (X, 25,0} + {w(®)} an

where {X]} is the state vector, and {w} is the system noise
vector with covariance

An observational vector {Y(t)} is related to the state
vector as

{F(®)} = [OHX(@)} + {(2()} a8

where [O] is a matrix associated with the observations, and
{q(t)}hmobmvmmvmwimmv’.
The extended Kalman filtering is basically a recursive
process for estimating the conditional state vector based on
the observed excitation and response. The method has been
successfully applied to linear as well as nonlinear parmeter
estimations (Hoshiya, 1984). Details of its application to
the identification of nonlinear parameters of bridge
structures can be found in Kim and Ang (1992).

4 NUMERICAL EXAMPLE

In this study, the Highway 5/14 overcrossing is selected as
a numerical example. This bridge is a typical highway
overcrossing constructed with piers and has an arch shape
plan. The structure collapsed during the 1971 San
Fernando earthquake; a 1/30 scale model study was
performed (Williams and Godden, 1976) to examine the
seismic behavior of this bridge. The dimensions of the
actual and model structures are shown in Table 1 and the
description of the original actual structure is shown in
Fig. 2. Structural properties of the model structure are
obtained through extended Kalman filtering (Yun, et al,
1989) using measured time histories and the results are
converted to the actual structure using appropriate scaling
relations.



Table 1: Description of Model and Real Structure

real structure model
Total Length 636 f1 254.5inch
Radius of Curvature 270 f1 108inch
Column Height 90 ft 36inch
Deck Section 301 X7ft 8.5inX2.5in
Column Section 10ftX5ft 4inX2in
ney
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Figure 2. Description of Highway 5/14 overcrossing

The properties of the actual structure needed for damage
estimation are summarized in Table 2.

Table 2: Structural Properties of Highway 5/14 Overcrossing

[_"_______ﬂ___ T § w [ § Wy

{0205 ] 6.09X10% [ —2.03X10° | 0.10 | 1.15 | 0.8 | 15.08

Damage is calculated from the expected maximum curvature
and dissipated energy at the locations shown in Fig. 3 and
the damage at the corresponding nodes are summarized in
Table 3. The global damage of the structure is determined
as a function of the damages at the nodes according to
Eq. 13, and the results are summarized in Table 3.

Table 3: Calculated Damage Index for Each Node (Mean)

[node [ 1/6g 1/3g 1/29 | 2/3g | 5/6g 1g

0.0107 | 0.0428 | 0.0963 | 0.1714 | 0.2680 | 0.3856

0.0361 | 0.1446 | 0.3257 | 0.5794 | 0.9059 | 1.3032

0.0090 | 0.0361 | 0.0812 | 0.1445 | 0.2259 | 0.3249

0.0050 | 0.0200 | 0.0449 | 0.0800 | 0.1250 | 0.1798

LA I KU I

0.0074 | 0.0298 | 0.0671 | 0.1193 | 0.1866 | 0.2684

The coefficient of variation of the global damage is fairly
constant at a value of approximately 0.62. For this
uncertainty, 0.54 comes from the variability of the
structural properties and the remainder can be attributed to
the randomness in the structural response. This structure
collapsed around 0.87g of ground excitation during the 1971
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Figure 3. Analytical modeling of Highway 5/14 overcrossing

Table 4: Global Damage Statistics under Different Int

1/6g | 1739 1 1729 [ 2/39 [ 5/69 | 1g
Global Damage || 0.0307 | 0.122 | 0.277 | 0.493 | 0.770 | 1.11
C.0.V. 0.620 | 0.620 | 0.620 | 0.620 | 0.621 | 0.621
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Figure 4. Probability of exceeding damage level

San Fernando earthquake. Collapse appears to be primarily
caused by the concentration of damage at the top of the
center pier (node 2 in Fig. 3). In accordance with this
observation, the structure can be considered to collapse at
approximately a global damage index of 0.8 and the
probability of exceeding different damage level d is shown
in Fig. 4. From these cumulative probability functions, the
median and C.0.V. of the global damage are calculated for
different earthquake intensities; the results are shown in
Fig. 5. Assuming that the probability of collapse is the
probability of exceeding damage level 0.8, the resulting
fragility curve for this bridge would be as shown in Fig. 6.
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Figure 5. Global damage index
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Figure 6. Fragility curve

5 CONCLUSION

A quantitative method for the damage estimation of existing
bridge structures is developed using identified structural
properties. A numerical example indicates that bridge
structures would coHapse around a global damage index of
0.8. To increase resistance to future earthquake loadings,
a structure can be strengthened in order to avoid damage
concentration. The suggested method can be used with
structural parameters identified through simple tests.
Information provided by the proposed damage assessment
method, including the expected global damages at different
earthquake intensities as well as the corresponding fragility
curves, should be useful for decisions related to needed
rehabilitation of bridge structures for seismic resistance.
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