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Comparison of different material models in simulating masonry behaviour

under horizontal loads
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ABSTRACT: Correctmodeling of panels under vertical and horizontal loadsis of extreme importance for the evaluation
of seismic safety of masonry structures. In this paper, finite element analyses adopting different material models are
presented, results are compared with experimental data and the accuracy of the analysed material modelsis investigated.

1 INTRODUCTION

Analysing composite materials, such as masonry, by
means of homogeneous models (macromodels) remains
a compulsory way for the calculation of the response of
usual structures. The utilization of non homogeneous
models (micromodels) for the representation of the real
discontinuities of material, is conceptually more
satisfactory but presents serious shortcomings because of
the high number of dof required for the analysis of
structures of usual dimensions and because of the
necessity to know chemical-physical parameters whose
evaluation is difficult and expensive.

In the case of masonry, the utilization of macromodels
for the calculation of the response under vertical and
seismic loads is particularly critical with respect to other
materials, for example concrete, because of:

1) dimensions of inerts, which cannot be assumed
"small" with respect to the dimensions of structural
elements;

2) not casual geometry of the masonry type.

The use of macromodels for the study of masonry
subject to vertical and seismic loads needs therefore a
preventive calibration of mechanical parameters in order
to reproduce, with a good approximation, the global
experimental behaviour of structural elements subject to
actions similar to the real ones.

In this paper, the behaviour of the following
macromodels for the study of masonry panels subject to
vertical and lateral loads is investigated: the no-tension
model (NT), the constant tensile srength model (CTS)
and the linear tensile strength model (LTS). Beyond these
displacement-based models, the behaviour of a
stress-based finite element is investigated; this element,
presentedin (Braga and Liberatore (1990, 1991)),is based
on the no-tension hypothesis and on the discretization of
the stress field by means of a finite number of fan stress
fields (multiple fan element or MF). The comparison
among these models and some experimental results of
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racking tests is dealt with in terms of axial force-shear
domains, and it allows to draw useful informations about
the practical applicability of the above mentioned models.

2 SAFETY DOMAINS

A parallelepiped panel of width b, height h and thickness
tis considered (fig. 1). If it is assumed that the lower and
upper faces of the panel remain plane in the deformed
configuration, the displacement field can be represented
by only 6 generalized displacement components, which
are collected in the vector u (fig. 2):

u=@ v 0 w, v ¢2)T a
The corresponding vector of generalized forces fis (fig.
3

f=(T, N, M, T, N, M\ @)
The minimum principal stresses at the vertices of the

panel are collected in the matrix S (fig. 4):
S = [ c‘ll G\z) (3)
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The displacement vector can be expressed by the
superposition of 3 rigid displacements: u, (lateral), v,
(vertical), and @, (rotation) (fig. 5):
u+u

3 (4a)
Vo= % (4b)
6, = N ;‘¢2 @)

and of 3 strain componerits: Au (shear), Av (axial) and A@
(bending) (fig. 6):

Au=u,—u, +doh (5a)
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Figure 1. Masonry panel Only strain components will be considered since rigid
displacements do not produce any stress. It is also useful
to introduce the dimensionless strain components g,, &,,
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: . The analysis can be conveniently carried out if a system
Figure 2. Displacements of spherical co-ordinates p (radius), 1 (latitude) and &
(longitude) is introduced in the space of dimensionless-
N, T ‘\Mz strains (fig. 7):
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Figure 4. Minimum principal stresses at vertices
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Figure 5. Rigid displacements
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shear + axial strain —- bending + axial strain

Figure 7. Systems of co-ordinates in strain space

In the space of dimensionless strains, the plane £=0
contains the fields of shea.r + axial strain, while the plane
E=nr/2 contains the fields of bending + axial strain.



Since in usual situations only tension-compression
states of stress arise in the panel, on the basis of the
experimental results presented in (Dhanasekar, Kleeman,
Page (1985)), a linear elastic stress-strain law with
Young’s modulus E and tensile cut-off is assumed. The
tensile strength is equal to zero for models MF and NT;
it is equal to the uniaxial tensile strength for the CTS
model, and it is linearly ranging between g, to 0.25¢, for
the LTS model when the minimum principal stress o,
ranges from O to the uniaxial compressive strength -G,
(fig. 8).
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Figure 8. Tensile cut-off laws

Safety domains can be conveniently defined in terms of
dimensionless axial force a and of dimensionless shear

B:

N,
= Tbio, @a)
T,
B= bro, (8b)

If it is assumed that the panel crisis occurs because of
the reaching of the compressive strength 6, and as the
minimum principal stress occurs to one of the vertices,
crisis condition can be written as follows:

max;(—0;) =0, ,7=1,2)9)

Singling out of critical strain fields can be carried out
for a generic couple (1, &) by increasing the value of p
from zero until to reach the crisis condition. The critical
value p, is function of 1 and &; therefore the set of the
terns (P, M, €) is the set of the strain fields corresponding
to the frontier of safety domain; if for such strain fields
we calculate the values of axial force N,, and of shear
force Ty, and the corresponding dimensionless values oy
and B,:

N,
=“hro, (10a)
T
= 10
B, bto, (105)

the set of the couples (o, B,) represents the frontier of
safety domain.

Calculation of safety domains can be conveniently
carried out by introducing a reference panel with unit
width, thickness and elastic modulus, height equal to
w=h/b, and subject to dimensionless strains (indicating all
the quantities related to reference panel by a *) (fig. 9):

p'=1, n'=n, §=¢ 439

4577

]

Figure 9. Reference panel

The similitude relationships between the actual panel
and the reference panel are:

N,=EbtpN; (i=1,2)(12a)
T, = EbtpT; (G =1,2)(12b)
M;=Eb’pM;  (j=1,2)(12¢)

o,=Epo,  (i,j=1,2)(12d)

The geometry of reference panel is defined only by the
aspect ratio ; and its strain field by 1 and &.

Crisis condition for reference panel has the following
expression:

G,
maxij(—cﬁ’)=—E-F:—k= o i,/ =1,2)(13)

where the compressive srength of reference panel ¢,” is
function of p,. From the operational point of view, the
research of p, is carried out by decreasing the value of
the compressive strength of reference panel, starting from
very high values, until to reach the crisis condition;
decreasing the compression strength results in shrinking
of the material strength domain.

Dimensionless axial force o, and shear B,, can be
written, using the similitude relationships:

Ny’

o=-r (14a)
Tz"

Bo=ov (14b)

From these expressions itcan be noticed that the frontier
of safety domain depends only on quantities related to
reference panel. Applications which will be presented in
the following paragraph are related to the situation of
shear + axial strain (£=0), since in this case a wide
experimental casuistry is available. In such sitnation the
frontier of safety domain is a curve in the a-B plane, which
depends on the aspect ratio and on the ratio between
tensile and compressive strengths.

3 NUMERICAL APPLICATIONS AND COMPARI-
SONS WITH EXPERIMENTAL DATA

The models utilized in numerical applications are divided
in two categories:

a) displacement-based models (NT, CTS, LTS);

b) stress-based models (MF).



Displacement-based models  satisfy  everywhere
kinematic equations, constitutive relationships are
satisfied only in Gauss points, equilibrium equations are
satisfied only in terms of nodal forces. Violation of
constitutive relationships is particularly critic; in fact it
leads to tensile stresses which are not compatible with the
material strength domain and therefore to a systematic
overvaluation of ultimate shear; in order to reduce this
effect it is necessary to use very fine meshes with a high
numberof Gauss pointsin each element. The considerable
degree of mesh refinement is also necessary in order to
accurately take into account the discontinuities of stress
field where tensile strengthis exceeded, if this is different
from0, as for models CTS and LTS. Anothercritical point
of displacement-based models is the calculation of the
principal stress at the vertices, of panel. As stress values,
calculated by derivation of shape functions, are not very
accurate {and this ismuch as true asmore high the gradient
of stress is, as at vertices), it is necessary to extrapolate
the stress state at vertices {rom the stress states in the
centre points of the nearest elements; in particular, the
stress states of 6 elements have been utilized in numerical
applications, resulting in a complete quadratic
extrapolation of the 3 stress components G,, Gy, T,,, {rom
which minimum principal stress has been calculated.
Response calculation has been carried out by equilibrium
iterations based on the modified Newton-Raphson
method.

MT smress-based element needs an extremely limited
number of dof because only one element per panel is
required, and it discretizes the stress field by a finite
number of fan stress fields (fig. 10).

Figure 10. Multiple fan swess field

This element satisfies everywhere equilibrium
equations and constitutive relationships but not, in
general, kinematic equations. The position of elementary
fans is determined, for a known displacement vector, by
minimizing the total complementary energy. Values of
axial force, of shear and of minimum principal stresses
at vertices can be easily calculated when the positions of
elementary fans are known.

The safety domains forp=1 and p=1.5 are shown in figs
11, 12 1ogether with POR domain and with experimental
results of racking test (Turnsek and Sheppard (1980)),
having assumed 6,=0.060, (1,=0.040,).
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Figure 11. Safety domains (i=1)
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Figure 12. Safety domains (1=1.5)

The number of elementary fans utilized for model MF
is equal to 6; while elements with 4 nodes and with 9
Gauss points have been used for models NT, CTS and
LTS in order to create a mesh 32x32 for p=1 and 32x48
for u=1.5.

In general, a good correlation can be observed among
the different models, and between these and experimental
results, with maximum differences comparable to the
experimental dispersions. NT and CTS curves are a lower
bound and an upper bound, respectively, of the LTS
curve. The curves of model MF are nearly coincident with
those of displacement-based models for low values of o,
by going down below them in an intermedium range of
o, and at last by going up them for high values of . In
practical situations (0=0.05-0.4), for jt=1 there is a very
good correlation between the MF curve and experimental
data, with a tendency to overvaluation from
displacement-based models, while for p=1.5 the curves
of displacement-based models show a better correlation
with experimental data, with a tendency to underestimate
from MF curve. POR curve doesn’t change as aspect ratio
does, therefore it cannot take into account the systematic
decreasing of ultimate shear when aspect ratio grows up.

The curves of model NT, for pu=1 and for different
degrees of mesh refinement (16x16, 32x32, 50x50) are
shown in fig. 13, together with the curves MF, POR and
experimental data. Itis possible to conclude that the mesh
32x32 is sufficiently accurate.



The stress states at the centre point of the elements of
the mesh and at vertices for models CTS and LTS are
shown in figs 14, 15 respectively; in abscisses and in
ordinates there are the axes of the dimensionless principal
stresses 0,'/c,’ and 6,"/a,, respectively, of the reference
panel. Those diagrams confirm the arising of
tension-compression states, or of cracking-compression
states if the tensile strength is exceeded; in the latter case
the representative point lies on the axis ¢,’/a,’=0.
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Figure 14. Stress states for model CTS
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Figure 15. Stress states for model LTS

A representation of principal stresses in the centre point
of each element of the mesh for models NT and CTS, p=1
and 0:=0.09 is shown in fig. 16. In the representation of
the model NT, the edges of the elementary fans of model
MF are also shown. This representation confirms a
substantial correlation among the different models.

a) NT + MF
Figure 16. Stress fields (u=1, 0=0.09)

b) CTS

4 CONCLUSIONS

The comparisons between nurnerical and experimental
results showed that the greater number of dof and the
greater complexity of the laws of the material strength
domain of displacement-based models do not yield
improvements of accuracy with respect 1o the
stress-based model MF. Therefore, the substantial
accuracy of model MF, -together with its low
computational cost, makes it particularly suitable for the
analysis of complex masonry structures under vertical
and seismic loads.
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