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ABSTRACT: Structural optimization procedures are used to perform parametric studies of
seismically loaded structures. The structures are analyzed and optimized in the time domain and are
subjected to a variety of behavioral and design constraints. Optimization procedures provide a
reliable means for comparing structural systems since these procedures ensure that the optimal
structures are designed using the exact same criteria for story drifts, displacements, member
stresses, natural frequencies, load cases, etc. The parameters to be varied and studied are: differing
lateral bracing schemes, differing damping values, multiple versus single time history loadings, and
different support conditions. The optimal designs which are subjected to the same behavioral design

constraints but with variations of these parameters are compared and contrasted as to their

performance, practicality, and cost or weight.

1 INTRODUCTION

The demand to produce reliable structural systems
while also considering economics in trying to’obtain a
minimum cost design has led to a considerable
amount of research in the field of optimum structural
design as evident by Levy and Lev’s compilation of
an extensive list of published work (Levy and Lev
1987). As a result, numerous optimization
algorithms of linear, nonlinear, and dynamic
programming have been developed and used to solve
structural problems with great success over the past
30 years. However, to date much consideration has
only been given to static loading. Optimization for
dynamic loads primarily covers two types of
constraints; constraints on the natural frequencies and
on quantities related directly to the dynamic response
(i.e. displacement and stress). Prior to 1970, little
consideration was given to dynamic structural
response, and since then most of the work done has
been to control natural frequencies since this problem
does not involve the parameter of time. Optimization
for dynamic displacement and stress constraints has
been examined in a limited manner using
approximations such as assuming pseudo earthquake
loading or sinusoidal loads; thus, not requiring a time

history analysis to be performed. Consequently, no
method has been developed to handle any arbitrary
loading using a time history analysis method.

The optimization of structural systems for sinusoidal
loads has been examined by Icerman (1969), Fox and
Kapoor (1970), and Mills-Curran and Schmit (1985)
to name a few. Earthquake loading has been partially
investigated by Venkayya and Khot (1975), Haug,
Arora, and Feng (1977) and Cheng and Truman
(1983).

An optimization algorithm has been developed that
can find the optimum designs for plane frame steel
structures subjected to a time history loading
(Petruska 1991). An optimality criteria method is
used with the objective function being the weight of
the building. Possible constraints are displacement,
story drift, stress, frequency, and side constraints.
Examples will be presented to show the usefulness of
this method to structural engineering applications.

2 STRUCTURAL MODEL

The building systems can include beam-columns
(shear, bending, and axial deformed members) along
with axial bracing. All members are assumed to be
wide flange steel sections. A statistical, non-linear
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Figure 1. Cross-Sectional Area versus Moment of
Inertia for AISC Wide-flange Sections (1 in. = 2.54 cm)
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Figure 2. Section Modulis versus Moment of
Inertia for AISC Wide-flange Sections (1 in. = 2.54 cm)

relationship is assumed to exist between the moment
of inertia and the cross-sectional area and section
modulus as shown in Figures 1 and 2.

The dynamic analysis is based upon an elastic
stiffness and consistent mass system. The
equilibrium equations of motion are

MG} + [CHDY + (KW} = (R ¢y

where [M] is the mass matrix, [C] is the damping
matrix, [K] is the stiffness matrix, {R} is the load
vector, {U} is the displacement vector and each dot
represents one differentiation with respect to time.
Rayleigh damping is assumed.

The system of ordinary differential equations given
in equation (1) can be approximately solved using any
available numerical integration method. The
optimization algorithm implements the central
difference and Newmark’s method. Newmark’s
method is preferred since it is unconditionally stable
thus allowing larger time steps to be used, and thus
greatly reducing computing time.

3 STRUCTURAL OPTIMIZATION

In structural optimization, generally the geometry of
the structure and the loads are known. Structural
optimization involves analyzing the structure to
determine the response, followed by a resizing of the
design variables so as to minimize the objective
function while satisfying all constraints. Since the
structures are usually indeterminate and the
constraints nonlinear, the algorithms are iterative.

When the weight of the structure is the objective
function to be minimized, the structural optimization
problem can be stated as follows

m
minimize W, = Y p,A,l, 0
i=1
subject to
U sU®RHsT, Jj=1..k 3)

here p is the density of the material, A is the cross-
ectional area, | is the length of the member, U is the
constraint which can be displacement, story drift,

tress, or frequency, T is the upper bound limit on

the constraint, U is the lower limit, k is the

number of constraints, and m is the number of design
variables.

An optimality criteria similar to the one used by
Cheng and Truman (1983) was employed to solve the
optimization problem. The gradients of the
constraints with respect to the design variables for a
specific time must be known, and are found by
directly differentiating the equations for calculating
the displacement response at each time step according
to the numerical integration method employed. Once
the gradients of the displacements are found, the
gradients of the story drift and stress response can be
determined. The gradients of the frequency
constraints can also be found by directly
differentiating the equation associated with the
eigenvalue problem Petruska (1991).

4 COMPUTATION AND RESULTS

A computer program ODSBDYN-2D, (2 Dimensional
Optimum Design of Steel Buildings under DYNamic
loading) was developed to handle the optimization
algorithm. Several examples will be presented to
show how useful and effective the program can be.
For all examples presented, E = 29000 ksi, p = 490



Ib/ft*, the lower limit on the moment of inertia is 290
in%, the lower limit on the cross-sectional area is 2
in%, and initially the structure is at rest and the base
undergoes a transient acceleration. The time step
used was 0.01 seconds which allows at least ten time
steps per fundamental period of the structure, and
Newmark’s method was used to perform the
numerical integration.
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Figure 4. Weight versus Damping Ratio for Three-Story,
Two-Bay Frame, Multi-Sine Loading (1 Kip = 4.45 kN)

The first example is the three-story, two bay
structure shown in Figure 3. Displacement
constraints are considered with the allowed absolute
value for the horizontal displacement being 1.00, .65,
and 2.35 inches for the first, second, and third
floor respectively. A total weight of 33.33 kips was
applied uniformly over each beam and was treated as
non-structural weight. -For this example, damping is
neglected. Two base accelerations were considered:
the N-S component of the El-Centro earthquake on
May 18, 1940 and the N-S component of the San

Fernando, California earthquake on February 9, 1971
taken at the Caltech Seismological Lab. The San
Fernando earthquake was multiplied by a constant of
1.81 so that both earthquakes had the same peak
accelerations. Three optimizations were performed;
Case A is the El-Centro Earthquake, Case B is the
San Fernando Earthquake, and Case C is both
earthquakes considered as two separate load cases.
The optimum designs are shown in Table 1.

TABLE 1. Optimum Design for Three-Story, Two-Bay Frame
under Earthquake Loading. (1 in. = 2.54 cm, 1 kip = 4.45 kN),

Load Case A 1 Case B l Case C
Element Moment of lnertia (in")
number
1 158.0 13%0.7 1076.3
2 56M.3 4849.1 9706.3
3 1501.2 1441.8 1308.7
4 6215 503.4 1003.8
5 18273 1526.8 1719.0
6 623.7 503.3 1007.9
7 355.0 399.1 397.1
8 1050.7 1055.9 1251.8
9 3584 398.8 389.3
1 1887.0 1705.7 23839
1 1887.1 1742.3 2632.8
12 1035.0 1031.5 1769.0
13 10421 1028.3 1745.8
1 3044 340.6 356.2
15 307.5 3413 357.0
Wt (KiDS) 11.867 11.525 13.516
hieration 10 3 12
Active Displacement Constraints
DOF 10,16 10,16 25 EC
Time (sec) t=3.58 1=7.23 (=474
Constraint 1.628 1.652 ~2.360
Value (in.) 2 19,25 19 S-F
123,59 t=7.43 1=6.81
237 1355 2.353
19
1=4.22
2328

Case A El-Centro Earthquake

Ciasc B San Femande

Case C  Load Case | El-Centro Earthquake
Load Case 2 San Femnando Earthquake

The results show that El Centro earthquake
produces a slightly heavier structure than the San
Femando earthquake. However, when the structure
is optimized using both earthquakes, an even heavier
structure results since the building must satisfy the
frequency characteristics of both earthquakes while
still satisfying the displacement constraints. Note that
the top floor constraint was active at different times
for both earthquake load cases.

The next example considers the same frame as
shown in Figure 1, but the effect of damping will be
included. A multiple sinusoidal load defined as

-50sinmt +40sin2nt +
30sin2.5n ¢ +45sin3n ¢, Q)
0 <t < Ssec.
0, t> Ssec.

a,® =

was used for the base acceleration. Damping of the
first two modes was considcred. Table 2 shows the



optimum design, along with Figure 4 showing the
optimum weight versus percent damping of the first
mode and Figure S showing the optimum center
column stiffness as a function of floor level. Figure
4 also shows the optimum design for the linked
structure. Linking forces all the members in a
particular group to be the same size. For the linked
case, all columns on a given floor are linked into one
set of design variables. Figure 4 shows the largest
decrease in weight occurring between 0 and 1%
damping with the change being for the unlinked
structure approximately 6.7%. The weight decreases
nearly linearly between 1 and 5% and between 5 and
20% damping with the slope decreasing as damping
increases. The figure also shows that the linked
structure is heavier than the unlinked structure which
is typical since each member is not free to take on its
optimum value. Figure 5 shows that the largest
decrease in stiffness occurs between the 0 and 5%
damping range with only minor changes in stiffness
occurring in the second and third floor for damping
greater than 5%. Thus for this structure, it can be
concluded that assuming 5 to 10% damping is enough
damping to achieve moderate decreases in weight and
column stiffness which is a realistic estimate of
damping in such a structure under this loading.
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Figure 5. Center Column Stiffness for Three-Story,
Two-Bay Frame for various Damping ratios Subject to
Displacement Constraints, Multi-sine Loading. No Linking
(1in. = 2.54 cm)
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Figure 6. Five-Story, Three-Bay Unbraced and Braced Frames
(lin. = 2.54 cm)

The five-story, three bay frame shown in Figure 6
is considered next. The frame is examined for the
two bracing schemes shown along with the moment
frame and also for fixed and hinged support

TABLE 2. Optimum Design for Three-Story, Two-Bay Frame
subject to Displacement Constraints for various Damping
Ratios under Multiple Sine Loading.

(1 in. = 2.54 cm, 1 kip = 4.45 kN)

% Damping 0% 5=5% 5=10% £,=20% £,=10%
E=5% | £E=10% | £=20% | £=5%
Element Moment of Inertia (in')
number
1,3 1409.1 | 11269 1113.9 1033.9 1143
2 3183.8 2370.0 20.6 2047.2 22233
4.6 449.6 392.1 3324 302.8 kkiovs
5 1455.1 1215.0 1104.9 1028.4 1106.0
79 305.8 290.0 290.0 290.0 290.0
8 716.9 5245 498.8 466.9 494.Q
10,11 1610.6 1256.9 1227.3 1136.5 1226.9
12,13 952.3 7574 710.4 660.1 710.8
14,18 290.0 290.0 290.0 290.0 280.0
W'raa (kips) | 10.764 9.69+ 9.555 9.263 9.555
Iteration 6 6 5 5 S
Active Displacement Constraints
DOF 2 19,28 2 10 22
Time (sec) 1=4.16 [1=2.83 1=4.23 =327 (=323
Value (in.) -2.349 .15 -2.352 -1.652 -2352
2a
1=4.27
-2.352 1

conditions. The ground acceleration was defined as

0,0 - {1353in(201,t 0,

0 << 1secl (5
t>1 sec

The allowable horizontal displacement was 0.5 inches
multiplied by the story number. A uniform weight of
100 1b/in was treated as non-structural weight on the
floors. Damping was neglected and will be in the
remainder of the examples presented. The results are
shown in Figures 7, 8, and 9.

Figure 7 shows the column stiffness versus level for
the braced frame for the fixed and hinged support. It
can be seen that the support condition really only
effects the first floor column stiffness by decreasing
the stiffness by 10 to 20% when going from a hinged
to a fixed support. The support condition is even less
pronounced on the optimum weight. The optimum
weight for the K braced frame with hinge supports
was 34.1 kips while for the fixed support it was 33.9
kips or a decrease of 0.6%. Figure 8 shows the
column stiffness for the moment frame. This
example also considers the case where the upper limit
on the moment of inertia was set at 28000 in*. The
effect of the support condition is much more apparent
on this structure. Using a fixed support greatly
decreases the first floor column size while decreasing
the weight from 110.8 kips for the hinge supported
structure to 85.1 kips for the fixed support or a
savings of 30.2%.

Figure 9 shows the optimum weight of the
structures versus iteration for the fixed support
structure for the three bracing scheme. This figure
shows the fast convergence of the algorithm and
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Figure 7. Column Stiffness for Five=Story, Three-Bay Braced
Frame. Linking, Hinge and Fix Support. (1 in. = 2.54 cm)
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Figure 8. Column Stiffness for Five-Story, Three-Bay Frame,
Hinge and Fix Support ( 1 in. = 2.54 cm)
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Figure 9. Weight Versus Iteration for Five-Story,
Three-Bay Frame (1 kip = 4.45 kN)

compares the global optimum weight for the braced
and unbraced structures. Adding the bracing results
in approximately a 50% weight decrease. Thus it can
be concluded that adding bracing significantly reduces
the structural weight and that the support condition
has very little effect on the braced frame since the
axial bracing will efficiently transfer the loads but has
a large effect on the moment frame.
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TABLE 3. Optimum Design for Eight-Story Setback Frame
(lin. = 2.54 cm, 1 kip = 4.45kN)

Story Drift | Stress
Level Column Moment of Inertia (in)
1 8886.4 9219.2 102445
2 6205.4 6006.3 6014.5
3 5018.2 4850.3 5685.8
4 3937.4 3826.0 4623.0
5 3038.5 3227 3188.6
6 33399 3720.4 3149.2
7 pali Ry 24202 2015.0
8 1228.3 1431.4 1093.1
Level Beam Moment of Inemia (in")
1 63245 54758 58109
2 7505.6 %64 T162.5
3 6368.7 6007.6 6171.0
4 5051.3 49935 51409
5 37622 3634.3
] 6566.8 T35 59823
7 43396 4815.8 3888.8
8 1032.2 175.0 917.5
Wre (kips) 58.85 59.88 59.98
lterations S 4 6
Active Displacement Constraints
DOF boa é1 61
Time (sec) 1=0.78 1=0.78 1=0.78
Value (in) -6.000 -6.011 -6.000
Active Stony Drift Constraints
Columr. # 12,1307,
Time (sec) 18.20
Vaiue (in) 1=0.78
-0.826
Active Stress Constraints
Member 1,6.8,11
Time (sec 14
Value (ksi) 1=0.77
30.0

The last example is the eight-story setback frame
shown in Figure 10. Both the braced and unbraced
frames are considered. This example is presented to
show the algorithm’s performance and the structures
behavior when subject to several different types of
constraints. For displacement constraints, the
allowed lateral displacement is 0.75 inches multiplied
by the story number. For story drift constraints, the
allowed value is 0.825 inches. And for stress
constraints, the absolute allowed stress is 30 ksi. The
sinusoidal loading in equation 5 is used for the base
acceleration. All the columns on a given floor are
linked, all the beams on the same floor are linked and
all the bracing on a given floor are linked. A
uniform weight of 100 Ib/in was treated as non-
structural weight acting on the beams. The optimum
design for the unbraced frame is given in Table 3 and
for the braced frame in Table 4. The beam sizes for
the braced frame are not shown in Table 4 because
they have reached their lower bound value of 290 in‘.
The results show an increase in column stiffness for
the moment frame at the sixth level because the
second bay stops at the fifth level, thus an increase in
the member size is required because the additional
support from the other bay no longer exists and also
Also note as the behavior of the structure is
restricted, the weight must increase in order to
control all of the responses. For the moment frame,
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Figure 10. Eight-Story Setback Unbraced and Braced Frames
(1in. = 2.54 cm)

TABLE 4. Optimum Design for Eight-Story Setback
Diagonally Braced Frame. (1 in. = 2.54 cm, 1 kip = 4.45kN)

Constraints Displ. | Displ. Displ. Displ.
Drift Stress Drift
Stress
Level Column Moment of Inertia (in‘)
1 7815 935.6 1156.2 1159.1
2 .7 888.5 838.0 868.3
3 250.0 4278 290.0 919
4 3103 499.6 294.8 454.6
s 290.0 315.6 290.0 3338
6 290.0 610.7 290.0 545.1
7 290.0 290.0 25%0.0 290.0
8 290.0 250.0 290.0 290.0
Level Bracing Cross-Sectional Area (in?)
1 5.75 5.25 6.41 6.15
2 5.34 4.86 497 3.82
3 5.2 439 433 457
4 4.35 3.53 4.18 38l
5 4.40 5.4 EN3 5.07
6 5.2 6.60 4237 6.32
7 4.52 7.87 3.59 2.47 i
8 2.95 5.26 2.27 4.95 v
Wray (kips) 230 | %0 | 245 | 2l
Herations 4 7 3 5
Active Displacement Constraints
DOF 61 58 {
Time tsec) 1=0.77 1=0.77 i
Value {in) -6.008 ~6.001
Active Story Drift Constraints
Column # 17.18.21 17,18.21
Time (sec) t=0.75 1=0.74
Value (in) -0.825 -0.825
Active Stress C
Member 14,10, 1,42
Time (sec) 4
Value (ksi) t=0.77 t=0.76
30.0 30.0

the column stiffness increases for the first five levels
for the case with stress constraints in comparison to
the displacement constraint problem while it
decreases for the top three levels. However, for the
drift constraint problem, the opposite occurs since
greater column stiffness is required at the top to
control the drift while greater column stiffness is
required at the bottom to control the stresses.
Finally, note that the addition of bracing.to the frame
resulted in nearly a 60% weight decrease for all
constraint cases examined.
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5 CONCLUSIONS

An optimality criteria method is shown to be feasible
for optimizing steel frames subject to dynamic loads
using a time history analysis method. Several
parameteric studies were performed using the
developed algorithm in order to study their effects on
the optimal design for seismic events. The study
showed that the use of bracing is very efficient in
controlling the structural response producing
significant weight decreases over the unbraced
moment frame. The examples also showed that
damping beyond five to ten percent of critical has
only a little effect on the elastic optimal design which
is significant since this is a typical amount of
damping that a building can provide. Furthermore,
multiple earthquake optimized structures generally
require a heavier structural system than single
earthquake optimized structures due to the need to
avoid differing frequencies from the two seismic
events. And finally, the support condition has only a
minor effect on a braced frame while it significantly
impacts the optimum design of a moment frame.
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