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Shear failure of R/C members after flexural yielding

T.Ichinose
Nagoya Institute of Technology, Japan

ABSTRACT: Shear failure of R/C members after flexural yielding is attributable to the reducing effective strength of
concrete and the increasing inclination of truss action inside hinge regions. Consideration of these effects leads to a
design procedure, which is accepted in the 1990 Japanese Design Guidelines for R/C buildings.

1. INTRODUCTION

Reinforced concrete beams and columns often fail in
shear after flexural yielding. We should have a rational
and reliable design procedure to prevent such failure
until each canstituent member reaches prescribed
deformation capacity. Most approaches to this end,
however, have been empirical and still failed to have
good agreement with experimental results. The object of
this paper is to propose a shear design procedure based
on the truss - strut model. This procedure is accepted in
the 1990 Japanese Design Guidelines for R/C buildings.

2. ASSUMPTIONS

We may explain flexural shear failure using Fig. 1:
inelastic rotation of the hinge region will decrease the
shear strength, whereas it will not affect the flexural
strength so much. At the crossing point Rpu, shear
failure will occur. In this paper, we ascribe this
reduction to:

(1) the reduction of aggregate interlocking in hinge
regions due to widening of flexural shear cracks, and

(2) the reduction of the effective compressive strength of
concrete in hinge regions due to densely intersecting
large flexural shear cracks.

Letwus consider a member with hinge regions at both
ends. We assume that the length of hinge regions is 1.5
D ( D: total depth of the member) as shown in Fig. 2 (a).
We ignore any dead and live loads. Treatment of these
loads is discussed by Ichinose (1992).

2.1 Inclination of truss and strut actions

We assume that superimposing the truss and strut
actions gives the shear strength of a member as was
done by Shohara (1981) and Minami (1981). We call
Fig. 2 (b) a "strut action," which does not require shear
reinforcement. We call Fig. 2 (c) a "truss action," which
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requires shear reinforcement. The regions shaded by
rough and fine dots in Fig. 2 (c) terminate inside and
outside the hinge regions, respectively. We denote the
angles of the truss actions in the roughly and finely
dotted regions by ¢p and ¢y, respectively. Between
these regions, we have the white region ABDC, where
the inclination ¢ varies continuously between ¢p and
¢m. The compressive stress of concrete also varies in
this region.

Note that the truss action does not correspond
necessarily to crack patterns. Shear cracks in R/C
members often occur very sparsely, but the stress in
concrete may be continuous as in Figs. 2 (b) and (c).
Assumption 1: In the finely dotted region of Fig. 2 (c),
we assume

cotpm <2 (or ¢y >26.5 deg) 1)
as was proposed by Thurlimann (1979). Truss action
with cot@y, > 2 would make shear cracks so wide as to
prevent aggregate interlocking.
Assumption 2: In the roughly dotted regions of Fig. 2
(c), we assume that the upper limit of cot¢y may be
between 2 and 1 depending on inelastic rotation of the
hinge regions, Rp. We denote this limit by A and
assume that A is given by Fig. 3. In short, we assume

cotpp <A )
In the 1990 Japanese Guidelines, ductile members are
normally required to have the following deformation
capacity including elastic deformation. These values are
also plotted in Fig. 3 neglecting elastic deformation.

1. Beams connected to shear walls : *0.025 rad.
2. Other beams : 0.020 rad.
3. Columns : 0.015 rad.

As illustrated by Nielsen (1986), ¢4 and ¢, cannot be

larger than 45 deg. Then, ¢ of the ductile beam must
always be 45 deg. (see Fig. 3 at Rp = 0.02), whereas

"¢m can be between 26.5 and 45 deg.

Assumption 2 comes from the reduction of aggregate
interlocking in the hinge region. Inelastic rotation
widens flexural shear cracks in the hinge region.
Consider the case of Rp = 0.02 rad. In many
experiments, number of dominant flexural shear cracks
{is about 5 or less. Then, one of those cracks may widen
‘up to Rp/5 = 0.004 rad, as shown in Fig. 4. If the
distance from the tip of the crack to the centroid of the
.member is 500 mm, the crack width at the centroid will
‘be about 0.004 rad x 500 mm = 2 mm. Aggregate
Jinterlocking will almost disappear when the crack is so
wide (Walraven 1981). Then, the direction of the
icompressive stress in the concrete must coincide with
that of the flexural shear crack, about 45 deg. This
'means that the inclination of truss action in the hinge
Tegion must be about 45 deg at Rp = 0.02 rad. Thus, we

thave 4 =1 for Rp > 0.02 rad as in Fig. 3. For 0 <Rp <
0.02 rad, we interpolate between A =2 and 1.

We assume that the inclination of strut action 6 may
{not be affected by inelastic deformation. This is because
the strut action is not related to straining of shear
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Fig. 6 Effectiveness factor of concrete in hinge region.

reinforcement.

In the case of a member with uniform shear
reinforcement, equilibrium and the lower bound theorem
requires cotdy, = cotdp, which yields an uniform truss
model shown in Fig. 5. This is nothing but a special
case of Fig. 2 (c). Refer to Ichinose (1992) for detail.

2.2 Effective strength of concrete

We ignore tensile strength of concrete. We assume that
the compressive stresses of concrete induced by the
truss and strut actions must be less than the effective

strength vop, where 0p is the uniaxial compressive
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strength of concrete and v is the effectiveness factor
assumed as follows:
Assumption I: Outside hinge regions, we assume the
following effectiveness factor proposed by Nielsen
(1984).

v=YVo= 0.7 - 0'5/200 (O'B in MPa) (3)
Assumption 2: Inside hinge regions, we assume Fig. 6
for the effectiveness factor. This allows for the decrease
of effective strength due to densely intersecting large
flexural shear cracks in hinge regions. A loading
excursion (monotonic or cyclic) may also affect the
effective strength, but we ignore this effect for
simplicity.

2.3 Strength of flexural reinforcement

We assume that flexural reinforcement has an infinitely
large yield strength. This assumption first means that the
truss action in Fig. 2 (c) always fails owing to the
compressive crushing of the web concrete and/or the
yielding of the web reinforcement, not because of the
yielding of the top and bottom flexural reinforcement.
This assumption secondly means that the top and
bottom flexural reinforcement can carry all the stresses
of the top and bottom stringers of the truss action, which
stresses in reality will be carried partly by concrete.
Thus we may assume that the distance between the top
and bottom stringers of the truss action, jy, is equal to
that between the top and bottom flexural reinforcement.
This assumption thirdly means that the tensile forces
of the strut action in Fig. 2 (b) can be so large that the
depth of the action will be D/2, making its shear force
the largest (Nielsen 1984). This is a dangerous
assumption because in reality the depth of strut action is
affected by the amount of flexural reinforcement and
axial force. However, the shear strengths observed in
experiments agree with or exceed the calculated shear
strengths with this assumption, as shown in Ichinose
(1992), as long as we assume the effective strength of
concrete as Eq. 3. We may thus justify this assumption.

3. ANALYSIS, VERIFICATION & DESIGN CHART

The preceding assumptions lead us to the relationship
between the inelastic rotation of the hinge regions, Rp,
and thé normalized shear strength as exemplified in Fig.
7. Strut action dominates in members with shorter length
and light shear reinforcement as shown in Fig. 7 (a).
Truss action dominates in members with longer length
or heavy shear reinforcement as in Fig. 7 (b). Note that
uniform shear reinforcement is assumed in Figs. 7 (a)
and (b): if the shear reinforcement is heavier inside hinge
regions than outside them, the contribution of the truss
action decreases more smoothly and the contribution of
the strut action becomes smaller.

An envelope curve of a observed shear force vs.
deflection angle (V-R) relationship is shown in Fig. 16
.with a broken line. We define the crossing point of the
envelope curve of the observed V-R and 0.8 Vexp
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The calculated Vu-Rp relationship is shown in Fig. 8
with a solid line where the starting point A is moved
rightward by the yielding deflection angle Ry, because R
consists of elastic deformation Ry and inelastic hinge
rotation Rp. We define the crossing point of the
calculated V-R and 0.8 Vexp the “calculated deformation
capacity", Rcal.

Yoshioka (1983) collected experimental data of R/C
members with a variety of parameters. Among these
data, those failed in shear after flexural yielding are
selected and compared with the calculation in Fig. 9.
Three kinds of symbols indicate the levels of average
axial stress. The calculated and the observed
deformation capacity shows good agreement.

The preceding assumptions also lead us to the
relationship between the normalized shear reinforcement
and the normalized shear strength for given inelastic
rotation of the hinge regions, as exemplified in Fig. 10.
In this figure, n is defined as follows:

n=pwhlpwm when 1< pyplpwm<2/A  (4)

n=2/A when Pwh/Dwm > 2/ 5)
where pyp and py,y are the shear reinforcement ratios
inside and outside the hinge regions. If n=1 (uniform
shear reinforcement), the point D coincides with the
point B. If Rp = 0 (non-ductile member), Fig. 10
reduces to Fig. 11.

Designers must calculate the necessary shear
reinforcement for a given shear force and required
deformation capacity. They can obtain it as follows:

a) Calculate v and A for prescribed Rp.
b) Assume the ratio n = pyh/pwm within the range 1 <

n<2/A
c) Calculate Vy/(b.jr.vop), the vertical axis of Fig. 10.

d) Find DPwmOyy, the horizontal axis of Fig. 10.

Thus, Fig. 10 can be the design chart. The lines DB and
BC are concave upwards and can be replaced
conservatively by straight lines.

4. CONCLUSIONS

(1) We may attribute flexural shear failure to the
reduction of aggregate interlocking and that of effective
compressive strength of concrete in hinge regions.

(2) Based on the truss - strut model in Fig. 2, we may
calculate imaginary shear strength of a ductile member as
a function of plastic hinge rotation as shown in Fig. 7.
(3) We may calculate necessary shear reinforcement
from Fig. 10 for a given normalized shear stress.
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