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ABSTRACT:
response analysis

The theory of multi-rigid-body is used in the present study for the earthquake
of shear-type structures, and the multi-rigid-body discrete model

for

shear-type structures is developed. Dynamic equation for earthquake response of the shear—type

structure
in formulation,
method

is derived. It is found that the equation is similar to traditional finite element
and it can be solved with ordinary numerical methods.
is used in the present study. A computer program for the earthquake response analysis

However, Wilson-6

of shear—type structures was developed on the basis of multi-rigid-body model, and it was used
to analyse the linear and nonlinear response of two reinforced concrete frames, collapsed in

Tangshan Earthquake. The analytical

results agree very well with the earthquake damage.

Compared with other approaches, the multi-rigid-body model is simple and reliable.

1 INTRODUCTION

With the development of modern science and
technology, dynamics of multi-rigid-body
system has gradually become, to some extent,
an independent branch of classical mechanics.

It deals with the system consisting of a
variety of rigid bodies and its research
procedure suits modern computational

techniques. In the past two decades, a number
of computational methods, completely different
in style, have been developed, such as those
proposed by Roberson, Wittenberg, Kane, and
differential methods, etc., which are suitable
for different multi-rigid-body systems. The
multi-rigid-body discrete theory has been
successfully used in a large variety of fields
such as machinery,vehicles, spaceflight,robot,
bilogical systems as well as rock and soil
engineering. It has exhibted pronounced
advantages in its highly formulated
computational procedures and nonlinear
analysis of a system including material and
geometrical nonlinearities, especially in the
treatment of large deformations.

People tried long ago to employ the theory
of multi-rigid-body to perform structural
analyses and the most classical one is the
lumped mass method. In order to get adequate
accuracy, the method requires sufficient
elements and because of the development of
finite element in the past few decades, the
method seems to be too simple and it has lost
its popularity. The finite element method has
successfully dealt with linear problems, but
it meets with complications in nonlinear
analysis. However, the finite element method

is approximate unless its shape functions are
orthogonal perfect functions of expansion of
series such as Taylor’s series and it will
meet tremendous mathematical difficulties. On
the countrary, the theory of multi-rigid-body
is precise and there is no need to verify its
convergence. So, the multi-rigid-body discrete
method is used in the present study for the
nonlinear dynamic response of structures.

The multi-rigid-body theory for dynamic
response of building structures is a
completely new method. Its broad prospects of
application are demonstrated through its use
in the present study for the earthquake
response analysis of shear—-type structures.

2 GENERAL THEORY OF DYNAMICS OF MULTI-RIGID
—-BODY SYSTEM

Conventional classical mechanical methods,
that is, the vector mechanical approach
represented by Newton—Euler equation or the
analytical mechnical approach represented by
Lagrange equation, can be in principle used
to analyse the multi-rigid-body system. Most
of the various research approaches stated
above were developed on the basis of these two
equations. R and W approach uses the concept
of graph theory to describe the structure of
multi-rigid-body system, considering the
relative displacement between neighbouring
rigid bodies as generalized coordinates and
deriving the motion differential eguation of
the multi-rigid-body systenm, which is
generally
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Ag=B 6]
where q is a column matrix of generalized
coordinates. Schiehlen method is used in the
study to derive the dynamic egquation of
multi-rigid-body system.

As for a system,consisting of N rigid bodies
which are hinged with each other, the amount
of restraint equations is s and the amount of
degree of freedom is n=6N-s. Select a column
matrix of generalized coordinates
a=[ q;, q@;,...,9x]7, so as to determine the
displacement of the system. Then, the sagittal
diameter column matrix r;=[x;,y;,z;1"and the
placement matrix s; of the center of mass of
each rigid body B; can be expressed with g and

time t as follows,

.,N (2)

r;=r;(q,t)
{ i=1,2,..

s;=s;(q,t)
By deriving the above equations for time t,
velocity column matrix Vi, acceleration column

matrix a; and angular velocity column matrix
w; can be obtained as follows,

¢ V; =HT; (a ,t)t‘]"'vi (q,t)

0;=Hp; (a,£)@+; (g, 1)

{a; =Hy; (q,)d+Ky; (0,&,8)8+; (q,t) 3
85 =Hrs (@, £)+Kri (¢, )&+ (a,t)
. i=1,2,...,N
where H+y{ and Hrj are partical derivation

matries of r;, s; !for g, with 3> dimensions

respectively. V; and @; are the derivative

column for time t,

respectively. Other parameters can be obtained
by deriving the first two terms in
equation (3)

Newton—Euler method is used to derive
dynamic equation for each rigid body, so

matries of r;, w;

<Fo
m;a; =F} +Ff

b -.=‘ <
Jpopte;Ji wj=M7 M3
and J;
inertia matrix of B; relative to center of

mass. F{ and M{ represent the principle vector
matrix of restraint resistance to which each

vhere m; is mass of rigid body B;,

restraint applies, and the principle moment

column matrix, respectively. Fg and M? are a

vector column matrix and principle moment
column matrix of active forces, respectively.
Combine equation (2) and (4), and write

M=diag[m,E, sz, cas ,mNE;J‘ ,Jz se e ,J"]m

T 4T T . T T T ,T

H=[H~” 'HTZY B ,Hm,HRl yHR2 1o e 'HRN] suxn
Q=[F7,EJ, ... EgsMT M3, .. M Ty

where E represents a unit matrix with 33

dimensions, then

MHG+K(q,q,t)=0%(q,q,t)+Q°(q,q,t) (5)

where Q%,Q° represent the active force column

matrix and the restraint resistance column

matrix respectively. According to the
principle of victual work,

I (Sr]Ff +867 M§)=0 (6)
and from equation (3), we obtain

8r;= Hr;8q, 88;= HriS q )

Substitute equation(7) into equation(6),noting
that ﬁqi is independent, we have

H'Qt=0 (8)

Therefore, when equation (5) is multiplied
left hand by HY, the motion differential

equation for the multi-rigid-body system is
obtained as follow,

M*(q,t)q+K*(q,d,t)=0"(q,q,t) (9)
Though linearization, equation (9 ) becomes
M(£)@+C(t)q+K(t)g=R(t) 10)

which is more approperate for most practical
engineering problems and according to its
format, it can be solved with ordinary
numerical approaches.

3 DISCRETE TECHNIQUE OF MULTI-RIGID-BODY FOR
THE EARTHQUAKE RESPONSE OF SHEAR-TYPE
STRUCTURES

Compared with the concept of conventional
finite element method, the discrete technique
of multi-rigid-body for structural analysis is
completely opposite. The latter assumes that
structural deformation concentrates totally on
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Figure 1. The structural models:(a) shear—type
model; (b)multi-rigid-body discrete model

the nodes of the rigid elements, but the
former assumes that the structural deformation
distributes within the deformable elements and
the displacements of neighbouring elements
coordinate at ‘the nodes. The discrete
technique of multi-rigid-body for earthquake
response. of shear—type structures follows the
following train of thought.

3.1 Discretization of multi-rigid-body of

structures
The modelling of engineering strcutures
usually involves a great deal of approxima—

tion.In modelling a structure as a multi-—rigid
-body system, the present study takes into
account the requirements of simplicity,
reliability and engineering accuracy of the
model and maintains obvious -physical meaning
of the model. With respect to ordinary
shear-type structures, the effect of axial
deformation is usually negnected for practical
purpose and the earthquake response of
structure is often analysed by using the shear
model shown in figure 1(a). Similarly, the
present study makes use of the discrete wodel
of multi-rigid-body for the shear-type struc-
ture as shown in figure 1(b). According to the
number of storeies, the structure is modelled
with' N elemental rigid bodies, centers of mass
of which correspond to each storey height.Each
neighbouring element is connected by a slip
hinge.A shear spring end a damper are attached
to the joint. The . stiffness of the spring is
just that of the shear stiffness in accordance
with each storey. So, the nonlinearities of
materials may be incooperated into K; and this
makes the structural analysis, to a large
extent, simplified. The damper may be removed
if there is no need to account for damping.

Figure 2. The displacements of shear—type
structure discribed by multi-rigid-body model

3.2 Formation of dynamic equation and solution
of earthguake response

The planar tree model without a crotch for
shear-type structures shown in figure 1(b) ,

can be mathematically described by utilizing
either the link matrix in Wittenberg’s wmwetrod
or the link array in Huston’s method. Only one

degree of freedom of translation in a
horizontal direction is taken into
consideration, and the spring and damper

between neighbouring elements may be regarded
as force elements, in which the linkage is
limited only to force action without any
geometrical restraints. Displacement of the
system is illustrated in figure 2.

Define generalized coordinates as the
relative slip between neighbouring rigid
bodies, that is, g=[u,,u;,...,e4J7. Then the

dynamic eguation for the complete system can
be established by using D’ Alembert principle
for each elemental rigid body.The equation is
similar to equation (10) in format and it is
not given here. However, response of a
structure under earthqguake excitation can be
solved with commonly—used Wilson—8 procedure
which has adeqguate precision and staticlity
when 62> 1.4 . The procedure is not stated in
the paper.

4 COMPUTER PROGRAM AND EXAMPLES OF MULTI-
RIGID-BODY DISCRETE ANALYSIS FOR STRUCTURAL
EARTHQUAKE RESPONSE

Using the theory of multi-rigid-body system,
the authors worked out a computer program,

which can be used to analyze the
elasto-plastic earthquake responses of
shear—-type structures under a definite

earthquake input. The input can be either a
actual record or an artificial earthguake wave
produced by using auto-regressive moving
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Figure 3. The model of restoring force

average model according to regquirement. As the
structures are often in a state of
elasto—plastic, the program chooses bi-linear
type and tri-linear degrading type as the
models of restoring force to analyse the
nonlinear response.

To inspect the reliability and correctness
of the program, the authors calculated a great
number of linear and nonlinear time-history
responses of evenly-distributed shear—-type
structures. Compared with the results of other
methods, such as finite element method, the
multi-rigid-body discrete model is effective.
As space is limited, the paper only presents
as follows part of results of two actual
earthquake disaster examples.

Example 1. The mid-south building of Tianjin
No.2 Wollen Mill was a 3—storey cast-in—place
reinforced concrete frame. In Tangshan
Earthquake with a magnitude of 7.8 on the
Richter scale on July 28,1976, the columns in
the 2nd floor and the 3rd floor were fissured
seriously, and some beam—ends cracked. After
being reinforced, it completely collapsed in
Ninghe Earthquake with a magnitude of 6.9 on
Richter scale on Nov. 15,1976. An overwhelming
majority columns of the 1lst floor were broken
and became s—shaped, and a few were cut off to
the ground. In analysis, the input is the
record in Tianjin Hospital during Ninghe
Earthguake, with a maxium ground acceleration
of 1.3472m/s?and with a duration of 6 seconds.
The damping ratio is 0.05 . The model of
restoring force of the structure is bi-linear
nondegrading type,as shown in figure 3 (kz=0).
And other primary datas. are shown in table 1 .

Table 1. Basic calculating datas of example 1

Floor 1 2 3

Mass  (Kg) 9184 9354 8462
Stiffness factor K (KN/m) 6870 7412 6563
Yielding displacement (m) 0.0373 0.0228 0.0142

in table 2,parts of analytical results using
the multi-rigid-body discrete model ( Model 1)
are compared with those using general finite
element model ( Model 2).

Table 2.1 Self-oscillatory characteristics
using Model 1

Number of mode 1 2 3
Vibration period 1.5860 0.5795 0.3979
1st storey -0.113850 —-0.197224 -0.247288
2nd storey -0.233551 -0.109994 0.213577
3rd storey -0.203418 0.236671 -0.106811
Table 2.2 Self-oscillatory characteristics
using Model 2

Number of mode 1 2 3
Vibration period 1.5859 0.5796 0.3979
1st storey -0.113838 —0.197225 -0.247293
2nd storey -0.233554 -0.109998 0.213569
3rd storey -0.023417 0.236668 —0.106817

Table 2.3 Muximum nonlinear -responses using
Model 1

Storey 1 2 3

Displacement (m) 0.09436 0.10897 0.13210
Storey displacement(m) 0.09436 0.02448 0.03124
Storey shear-force(KN) 256.252 168.994 93.208

Table 2.4 Muximum nonlinear responses using

Model 2

Storey 1 2 3

Displacement (m) 0.05095 0.09646 0.14060
Storey displacement(m) 0.05095 0.04780 0.05570
Storey shear-force(KN) 256.252 168.994 93.208

And the nonlinear earthquake time—history
responses obtained using Model 1 are shown in
figure 4. (The numbers on curves in the figure
are the orders of storeies.)

From the calculated results we can see
that, the collapse of the building was caused
by the large displacement due to yielding in
the first storey,and the second storey as well
as the third storey also yielded. This agrees
very well with the phenomenon  of earthquake
damage.

Example 2. The new—north building of Tianjin

Alkali Factory was a twelve—storey
cast—-in—-place reinforced concrete frame
structure. The structure collapsed from the
seventh storey to the top in Tangshan

Earthquake. The input for analysis and the
model of restoring force are the same as
those of example 1 , and the damping ratio is
also 0.05 . Other information is given in
table 3 .
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Figure 4.2 Storey displacement time—histories

Storey force (KN

Time (sec.)

Figure 4.3 Storey shear—force time—histories

Table 3. Basic parameters of example 2

Storey Mass Stiffness Yielding dis-
(Kg) (KN/m) placement (m)

1 5560 425602 0.00383

2 6570 314475 0.00430

3 15500 284461 0.00449

4 4400 169533 0.00523

5 4740 96469 0.00740

6 6030 91744 0.00632

7 6630 65625 0.00610

8 7100 53771 0.00595

9 4580 33600 0.00714

10 4410 20649 0.00775

11 4410 13834 0.00721

12 4620 10631 0.00468

Table 4 gives the maximum nonlinear

responses.
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Figure 5.3 Storey shear—force time-histories

Table 4. Maximum nonlinear responses of

example 2

Storey Displace- Storey dis— storey sh-
ment (m) placement(m) ear force(KN)

1 0.01584 0.01584 1627.92

2 0.01805 -0.00259 -814.60

3 0.02009 -0.00276 -785.38

4 0.02230 0.00427 723.62

5 0.02601 0.00711 686.88

6 0.03136 -0.00631 -579.57

7 0.05743 0.02749 400.03

8 0.06893 0.01161 320.00

9 0.07847 0.01056 240.00

10 0.09737 0.02977 -159.61

11 0.13174 0.07536 -99.79

12 0.17166 0.07847 -49.82



Figure 5 shows curves of the structural
nonlinear responses. (The numbers on curves in
the figure are the orders of storeies.)

According to the results, the seventh storey
and the storeies above it yielded, so that the
upper part of the structure collapsed. This
agrees very well with the earthquake damage.

5 CONCLUSIONS

The paper develops a multi-rigid-body theory
to analyse the earthquake responses of
shear—-type structures. By means of theoretical
analysis and inspection of calculating
examples, the theory has obvious superiority,
at least, in three aspects as follows: (a) It
is reliable. The methods of multi-rigid-body
discrete model has in theory accurate solution
and the analytical results of a structure
simplified with a model still satisfy the
engineering requirement; (b) It is simple and
time-saving compared with other models, the
geometric description of the model can be con-
ducted by computer, and the majority of calcu-
lation is completed in matrix form; and (c)The
handling of nonlinearity is easy. The theory
incorporates material nonlinearity into the
spring factor of Jjoints, and it 1is not
restrained by geometric nonlinearity, with
which other methods are beyond comparasion.

It is worth noting that, there is no
essential distinction between using the multi-
rigid-body and using finite element model to
analyse the dynamic responses of shear—type
structures. The authors introduced the multi-
rigid-body discrete model into shear—type
structures with the purpose of looking for a
regularity of applying the model to structural
dynamic analysis, so as to apply the theory to
bending-type structures and shear—-bending-type
structures.
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