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On the dynamics of rigid block motion under harmonic forcing

S.J.Hogan
Mathematical Institute, St Giles', Oxford. UK

ABSTRACT: The response of a free-standing rigid block to horizontal simple harmonic forcing is
examined in detail using the model of Housner. It is shown that (i) all types of subharmonic response
are possible, (ii) different responses can occur at one point in parameter space, (iii) exact expressions are
found for stability boundaries in parameter space, (iv) asymmetric solutions exist just outside the upper
boundaries of symmetric solutions, (v) period- and impact-doubling cascades occur as parameter values
are varied even further outside the boundaries, (iv) aperiodic (or chaotic) responses are possible, (vii)
periodic responses can occur which appear to violate West’s formula and (viii) steady state responses of
the forced system can be so large as to produce toppling of the block if the system were unforced. These
results are used to explain and provide quantitative agreement with experiments of Wong and Tso.

1 INTRODUCTION 2. THE GOVERNING EQUATIONS

The effects of an earthquake on man-made structures We consider the simplest model of a rocking block,
have been the subject of many articles in recent years. sketched in Figure 1. The two-dimensional block is
For a simple object like a rigid block, a great deal of taken to be rigid and uniform with breadth B and
progress has been made since the seminal paper by  height H. The block angle « is given by

Housner (1963). This type of model is applicable to

things such as concrete shields around radiation equip- a = tan*(B/H) 1)
ment, prefabricated buildings, free standing equipment

(e.g- power transformers) and even to the inside of a The harmonic excitation, a,, is only in the horizontal

nuclear reactor core made form graphite blocks. direction. We take it to have the form
More recent experimental and computational work
has revealed intriguing patterns of response as the ay = Pag cos (Qr) )

earthquake amplitude or frequency is varied. These

observations encouraged the present author to embark The block has mass M and the moment of inertia of
on a detailed mathematical study of the steady state  the block about O or O’ is given by L. The system
responses (Hogan 1989, 1990). At the same time, a  frequency ¢ is given by

combined theoretical and experimental study of the

steady state solutions was published by Wong and Tso MgR
(1989). The point of the current study is to reconcile Q= - 3
the apparent differences between the two theoretical L

approaches and to demonstrate the quantitative agree-

ment between the theory of Hogan (1989, 1990) and  The governing equations then become

the experiments of Wong and Tso (1989). We shall

not discuss the transient responses in this paper. a% + sin[a(1 - x)] = -afcos wt cos [¢(1-x)] (4)
In section 2, we introduce the governing equations.

The necessary stability analysis is outlined in section 3 for x > 0 and

and extended numerically in section 4. The experi-

mental work of Wong and Tso (1989) is outlined in ak + sin[a(l - x)] = -aBcos wt cos [a(1 + x)] (5)

section 5 and shown to be completely explained by our

theory. Section 6 contains our conclusions. forx > 0, where t = o7 and w = {/e.
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Figure 1. Definition sketch for rocking block »

The dots denote differentiation with respect to t.

For slender blocks we can linearize these equations
(but not the rocking system itself) to give the follow-
ing:

%-x+1=-Bcoswt (x>0) (6)
%-x-1=-Bcoswt (x> 0) )

At impact we take
X(ta) = rx(ts) ®

where r is the coefficient of restitution such that
0=<r=<l,t,, t; = time just after and before impact
Throughout this paper we take t, = t,.
West’s formula (Milne 1885) corresponds to
B>1 ©)
This condition is satisfied when the overturning
moment of the excitation about one corner exceeds
the restoring moment due to gravity. The block may
rock or even topple.
In what follows, we set y(t) = x(t), the scaled angular
velocity. Note that the unforced block (8 = 0) would
topple if id > 1.

3. STABILITY ANALYSIS
Direct numerical integration of equations (4) - (8) for
different values of B, w and r from quiescent initial

conditions reveals several types of steady state solu-
tion, described in Spanos and Koh (1984) as type
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(m,n) reponses. These correspond to 2m impacts in
an orbit which repeats itself every n periods of the
drive. 'Single’ impact orbits are said to occur when
m = 1. Despite numerous attempts, the use of numer-
ical integration has failed to produce an established
pattern for these responses. In addition, if initia]
conditions are varied at one point in parameter space,
several solutions are possible (Hogan 1989, 1990).

An analytic approach was therefore adopted in order
to provide a test for the numerical simulations and to
provide the framework in which the responses could
be interpreted.

The details of the method are to be found in Hogan
(1989, 1990). The symmetric single impact type (1,n)
orbits occur widely throughout numerical and labora-
tory experiments and hence are singled out for analys-
is. The approach can be summarised as follows.
Firstly areas of (8, w, r) parameter space are found in
which the orbits can exist. It is easy to show that no
symmetric orbits exist for n even. Secondly, using
techniques of orbital stability analysis, these orbits are
tested for stability to small parameter changes. No
assumptions are made about initial conditions and the
method is valid for all values of the parameters, pro-
vided the block angle a is small. Thus the block is
slender and the exact solutions to equations (6) and
(7) form the basis of the approach.

Results from the analysis are given in Figure 2 for
r = 0.925, a value corresponding to a concrete block
impacting an aluminium base. For each value of n in
Figure 2, there are two curves, in between which sym-
metric single impact responses are stable. For
example, at the cross (X), only the steady state sol-
utions corresponding to n = 1, 3, 5 and 7 are stable.
Curves for n = 9 pass above this point but are not
shown for clarity. No symmetric responses at all are
stable outside the n = 1 curves, although transients
may be significant both in amplitude and duration. If
B_ denotes the upper boundary and B, the lower, then
explicit expressions for B, for arbitrary n, w and r
are given by

Xl 1/2
R =(1+m2)[1<1+—uﬁ] 1)
where
X=(1- r)(l — cosh %’5) (12)
W2=Y*+ 272 (13)
Y= — wsinh %[1—;-] (14)
(15)

Z=(1+f)(1+coshﬂ)
w
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Figure 2. Stability boundaries for symmetric type (1,n
orbits with r = 0.925.

—_— 2
K:=(N*_Y+M=Z)X L,w (16)
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) @
+ rsinh? = 17
+ rsinh = (17)
_ 2 nn
M:-(1+r)(l+coshm>
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It is straightforward to show that K, = 0.

their experiments and theory. The problem lies in the
fact that some of the solutions may exist but are
unstable, and hence cannot be found in practice. In
addition, a robust numerical method is required to
explore parameter space in regions untouched by the
analysis, as shall be demonstrated in the next section.

4. EXTENSION OF STABILITY ANALYSIS

It is natural to enquire what happens outside the sta-
bility boundaries. Several possibilities are discussed in
Hogan (1989,1990). In this paper we shall focus on
the changes which occur as the upper (8.) boundary is
crossed by for example an increase in forcing ampli-
tude at fixed frequency. A good example is shown in
Figure 3 where an arbitrary value of block angle is
chosen. (This demonstrates that our conclusions do
not only apply for small . The exact solutions are
only vaid then but similar 8, curves can be calculated
numerically for all & such that 0 < a < #/2). In Fig-
ure 3(a), the symmetric type (1,1) orbit at § = 2.0 is
shown. Then as B is increased, a symmetry breaking
bifurcation occurs at 8 = B.. A solution on one (of
the two) branches at 8 = 3.1 is shown in Figure 3(b).
It is still type (1,1) but is now clearly asymmetric.
Note also that x > 1. Therefore the block is rocking
during forced motion beyond the point at which it
would topple if it were not being forced. (A highly
counter-intuitive observation!). Further increases in 8
cross a series of period doubling bifurcations to prod-
uce the asymmetric type (2,2) orbit at 8 = 3.2 in Fi-
gure 3(c), the asymmetric type (4,4) orbitat § = 3.21
in Figure 3(d) and the asymmetric type (8,8) orbit at

It is reasonable to ask how the different steady state g = 323 in Figure 3(e). AtB = 3.25, there is a cha-

responses can be obtained. The answer lies with the
initial conditions, where in certain parts of parameter

otic response (not shown). The first return map of an
attractor at another point in parameter space is shown

space, a tiny change in the starting position or velocity jn Figure 20 of Hogan (1989).

can lead to a completely different solution whose
amplitude may be markedly different from the origi-
nal. For example, at the cross in Figure 2, then = 7

The lower stability boundary corresponds to a saddle-
node bifurcation. All the results in Figure 3 were
obtained using a numerical program described in the

solution has a mz'iximum amplitude seven times. greatet Appendix of Hogan (1989). It has proved an invalu-
than the harmonic response (Hogan 1990). This unpr-3ple complement to the analytic work of section 3.
edictability is shown in Figure 4 of Hogan (1990) for aNeedless to say, in areas where agreement was to be

wide range of initial conditions.

Note that from figure 2, orbits are possible for
B < 1. This observation would appear to violate
West’s criterion. But that criterion takes no account

of initial conditions and actually merely implies that if

B > 1, rocking will occur. It is silent on the position

expected between the two approaches, it was found.

5. EXPERIMENTAL WORK

This analysis can be used to explain the experimental

when B < 1. In fact rocking can occur in this part of observations of Wong and Tso (1989). Full details of

parameter space, provided the initial conditions are
correct.

We conclude this section with a discussion of the
theoretical approach of Wong and Tso (1989). They
concentrated on finding sufficient conditions for the
existence of steady state solutions to the problem.
This approach led them to find differences between

the comparison are given in Hogan (1990). Briefly,
the authors conducted experiments on a slender block
with @ = 0.18 and r = 0.88. Amongst other things,
they found a symmetric type (1,1) orbit at 8 = 2,

w = 3.07 (Figure 4, point A). As they reduced the
frequency to w = 1.9, keeping the amplitude constant,
the response became asymmetric. This corresponds to
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Figure 3. Excerpts from the period - and impact-
doubling cascade at @ = arctan %, r = 0.5 and

w = 2n/3.

P
Y A=l /n-s

Figure 4. Stability boundaries for r = 0.88. The
points A, B, C and D correspond to experimental
points chosen by Wong and Tso (1989).

Table 1. Comparison of experimental results of Wong
and Tso (1989) with present theoretical work.

Point x Experiment Theory Error
A x>033 3.2 3%
x<0 33 3.2 3%
B x>0 7.6° 8.2° 6%
x<0 65° 6.0° 8%
C x>0 3.9° 3.8° 3%
x <0 3.9° 3.8° 3%
D x>0358° 5.6° 3%
x<0 38 4.0° 5%

point B of our Figure 4. As can be seen, this
coincides exactly with our predictions for a symmetry
breaking bifurcation, using equation (11). Similarly,
Wong and Tso (1989) observed a symmetric type (1,3)
response at 3 = 2, w = 4.9 (point C) and an
asymmetric response at § = 2, w = 4.14 (point D).
Our analysis agrees very well indeed. These authors
also observed many other features all of which can be
satisfactorily explained using the present theory. The
details of the responses are also captured by our
numerical method, as can be seen from a comparison
of response maxima given in Table I (see Hogan
(1990) for further detailed comparison of results).
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6. CONCLUSIONS AND FURTHER WORK Milne, J. 1885. Seismic experiments. Trans. Seism.
Soc. Japan 8: 1-82.
The steady state responses outlined here are a necess- Spanos, P.D. & A.-S. Koh, 1984. Rocking of rigid
ary prelude to understanding the effect of a real earth- blocks due to harmonic shaking. J. Eng. Mech. ASCE
quake on any free-standing structure. The simple 110: 1627-1642.
model of Housner (1963) is shown to possess extreme- Wong, CM. and Tso W.K. 1989. Steady state rocking
ly complicated dynamics, including chaos. The experi- response of rigid blocks. Parts 1 & 2. Earthquake
mental work of Wong and Tso (1989) is successfully Eng. Struct. Dyn. 18: 89-120.
explained, confirming the existence and the form of  Yim, S.C.S. & H. Lin, 1991a. Nonlinear impact and
subharmonic and asymmetric responses. chaotic response of slender rocking objects. J. Eng.
Bruhn & Koch (1991) have shown that heteroclinic Mech. ASCE 117: 2079-2100.
orbits are possible in this problem, leading to horse- Yim, S.C.S. & H. Lin, 1991b. Chaotic behaviour and
shoe dynamics. They give an e..act formula for the stability of free-standing offshore equipment.
tangencies and explicit examples of manifold inter- Ocean Engng 18: 225-250.
sections.
Hogan (1992a) has added a damping term kx to the
left hand side of equations (6) and (7). Itis shown
that despite this extra constraint the full range of
responses is still possible, albeit in a smaller part of
parameter space. Heteroclinic tangencies also occur in
this problem (Hogan 1992b).
In the case of a block tethered at one corner, the
problem can be reduced to that of an inverted pend-
ulum impacting asymmetrically placed side-walls
(Hogan 1992¢). The analysis proceeds essentially as
before, except that all orbits are necessarily asym-
metric and hence solutions with n even are possible.
The bifurcations obtained in the stability analysis are
saddle-node and period-doubling respectively.
It is hoped that presentation of this work at
IOWCEE will give the above method greater publicity
as some authors (e.g. Yim and Lin 1991a, b) appear
unaware of its existence.
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