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Pulse response analysis of asymmetric structures
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ABSTRACT: Base on PULSE RESPONSE ANALYSIS method, a procedure to estimate seismic responses of
asymmetric structures is presented. By applying the procedure to an idealized monosymmetric
system subjected to a unidirectional earthquake excitation, it is concluded that, 1) this method
provides a reasonable estimate for the maximum responses of asymmetric structures by comparing
with those by time-history analysis, and 2) unfavorable influences of eccentricity greatly cause
unequal distribution of deformation energy to resisting elements, so that effect of eccentricity
on responses in noneccentric direction should be also considered in aseismic design.

1 INTRODUCTION

Time-history analysis methods have been used
to determine overall elastic or inelastic res-
ponse behaviors of structures under earthquake
excitation. However, in most cases of the
aseismic design of buildings many approximate
and appropriate methods are more practical and
convenient for estimating such scales as the
maximum displacement and energy absorption.
The PULSE RESPONSE ANALYSIS for ULTIMATE
ASEISMIC DESIGN (UAD) proposed by Yamada,
Kawamura (1976, 1980) is Jjust one to practi-
cally use to the response analysis. In ‘the
UAD, it is considered that structural failure
of buildings subjected to dynamic loading may
be generally classified to two modes, one is
due to accumulated damages from cyclic re-
sponses and the another is due to excessive
one-side deformation of a structure or its
member. Therefore, this means there are two
types of ULTIMATE ASEIMIC CAPACITIES corre-
sponding to the both critical behaviors above
for the UAD. To evaluate these ULTIMATE SEI-
SMIC CAPACITIES, FINITE RESONANCE RESPONSE
ANALYSIS (FRRA) for the former and PULSE RE-
SPONSE ANALYSIS (in its application, repre-
sented as VELOCITY PULSE RESPONSE ANALYSIS:
VPRA and ACCELERATION PULSE RESPONSE ANALYSIS:
APRA) for the latter have been Proposed by
Yamada and Kawamura, and successfully applied
to estimate the maximum responses of SFD
system.

On the other hand, almost all the buildings
are eccentric in stiffness or strength, and
respond in coupled lateral-torsional behaviors
to the earthquake motion, even when there is
no rotational component. It is necessary for
response analysis of asymmetric structures to
consider the torsional degree of freedom in
addition to the translational those usually

UAD,

considered in the SFD system. Based on the
FRRA of the asymmetric structures has
been developed by authors(1988). The purpose
of this study is to expand VPRA/APRA to a
torsionally coupled system with nonlinear
resisting elements, and to demonstrate its
application by applying the procedure to a
parametric problem and discussion on the
results.

2 IDEALIZED SYSTEM AND EQUATIONS OF MOTION

To investigate the inelastic behaviors of the
eccentric buildings, a one-mass single-story
model shown in Fig.1l is adopted. The system
consists of a rigid deck supported by idea-
lized planar resisting elements X1, X2 and Yl,
Y2 situated at its periphery. And to simplify
the problem, it is assumed that the system is
eccentric for horizontal excitation in the x-
direction only, and its eccentricity is a
result of unbalanced stiffnesses of the ele-
ments X1 and X2. In this way, the system has
two coupled degrees of freedom, namely lateral
displacement Xc of the mass center (CM) re-
lative to the ground motion and rotation &c
about the vertical axis.

Let 1lxi, lyi represent the distances from CM,
fxi, fyi represent the lateral restoring
forces, and dJxi, dJdyi represent the lateral

displacements of i-th element along the prin-

cipal axes, respectively. Then Oxi, Jyi and
fxi, fyi can be expressed as
Sxt = Xc - lyi-Bc; Oyi = 1xi-0Oc )
fxt = £(8xi); fyi = £(&y1) )

where f=a general function for the geometric

description of the skeleton curve shown ip
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Fig.l Idealized system
Fig. 1.

The equations of motion for the system only
under translational component Xg of ground
motion in the x-direction can be written as

m-Xe + Sfxt = m-Xg
| o

I-Be - Sfxi-1yi + Zfyi-lxi = 0

where m=the mass of the deck; I=the mass
moment of inertia of the deck about the ver-
tical axis through CM; Xg=the acceleration of
the ground motion.

To represent Eq. (3) in the same dimension,
let's define the z-direction shown in Fig.1l to

represent the rotation, and let
Ze = Bc-r (r = Vilm) (4

Fx = Zfxi
} 5)

where Zc=the torsional displacement of the
deck in the z~direction shown in Fig. l; Fx, Fz
=the total forces of the resisting elements
along the x- and z-directions; r=the mass
radius of gyration of the deck about the
vertical axis through CM; 1xi', lyi'=lxi/r,
lyi/r. Then, Eq. (3) can be simply written as

} (6)

Fz = Zfyi-1xi® = Zfxi-1lyi’

m-Xe + Fx = m'ig

m-Zec + Fz = 0

3 PULSE RESPONSE ANALYSIS
For developing the VPRA/APRA procedure, the
following assumptions are important.

1) Response of system can be represented as
a monotonic behavior shown in Fig.l. It is a
pulse having the maximum amplitude (called as
PULSE RESPONSE) picked out from time-history
random responses. Effect of its viscoelastic
damping can be ignored.
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a) velocity impulse b) acceleration impulse

Fig. 2 Rectangular impulses

2) Input component for excitation can be re-
presented as rectangular velocity or accele-
ration impulse shown in Fig. 2, and its ampli-
tude can be given from a normalized caharac-
teristic spectrum (velocity or acceleration)
of earthquake motion shown in Fig.3 according
to its duration tp=1/2Tp.

Now, let's take an indeterminable integral of
both sides of Eq. (6) with respect to Xc and
Zc, respectively, the following equations can
be obtained.

} M

It is clear that Eq. (7) represents the energy

equillibium in the x- and z-directions, respe-
ctively. Here, let's introduce two variables
about energy to implify Eq. (7). Let Axp, Azp
denote the integral of the second terms of
left sides in Eq. (7) meaning the deformation
energy input to the system in the x-~ and z-
directions. Then Eq. (7) can be expressed as

} ®)

And according to the both forms of the
impulses shown in Fig. 2, the resulting expre-
ssions of Exp, Ezp can be also written in the
two corresponding forms by completing the
integral of Eq. (7) with the initial and final
conditions of the impulses noted in Fig. 2.

X . X X .
fo m-XedXe + [o FxdXe = [o m-¥gdXe

Zc o Zc
!0 m-2cd2c + IO FxdZc = 0

1/2-m-X% + Axp = Exp

1/2-m-2<2: + Azp = Ezp

1) In case of velocity impulse
Exp = 1/2-m-(vxp + Vox)?
} ®
Ezpp = ]./2'111~Vo:z

2) In case the acceleration impulse



Exp = 1/2-m- (2Xcp-axp + Vox)
} (10)

Ezp = 1/2-m-Voz

where Vxp, oxp=the amplitudes of the velocity
and acceleration impulses; Vox, Voz=the initial
velocities of the system; Xcp, Zcp=the dis-
placements of CM at the time when the impulse
duration comes to the end; Xcu, Zcp=the dis-
placements of CM at the time when the velo-
cities Xc, Zc become zero in the x- and z~-
directions.

Adding the two formulas in Eq. (8) together,
it is found that the equation physically
interpreting the energy equillibium of the
whole system can be obtained. That is

1/2~m(Xc2+ 2:'.3 + Axp + Azp = Exp + Ezp (11)

Axp + Azp = ZAxi + ZAyi (12)

where Axi, Ayi=the areas surrounded with fxi-
6xi and fyi-0yi curves of i-th element.

Now, let's transform Eq. (8) by leaving the
terms of kinetic energy 1/2m:Xc’, 1/2m*Z& in
the left sides only, and taking variables-

separated integral between [0, tp] for the

left, [0, Xcp] and [0, 2Zcp] for the right
sides, respectively, the following expressions
can be obtained.
X
jocPch/VExp - Axp
tr = { 20 } (13)

IO dZc/VEzp - Azp

Eq. (13) is a simultaneous equation including
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a) velocity spectra b) acceleration spectra

Fig. 3 Spectra of PULSE RESPONSE and excitation
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Fig. 4 Characteristics of restoring force

four unknown qualities, tp, Xcp, Zcp and vxp Or
axp. From the analytical geometry, if one set
of (Xcp, Zcp) 1s given to Eq. (13), a corre-
sponding curve can be determined in the Tp-Vxp
or Tp-axp coordinates shown in Fig. 3. Here, we
define the curve as VELOCITY PULSE RESPONSE
SPECTRUM (VPRS) or ACCELERATION PULSE RESPONSE
SPECTRUM (APRS) for the excitation of velocity
or acceleration impulse, respectively.

The VPRS/APRS give a relationship between the
PULSE RESPONSE and the earthquake excitation.
So, all of the VPRA/APRA procedures to do is
to find the maximum set of (Xcp, Zcp) among
those which let the VPRS/APRS curves spectrum
(velocity or acceleration) of the ground
motion excitation.

4 EXAMPLE OF ANALYSIS

It 1is apparent from the equations motion
Eq. (3) that the nonlinear response of the
monosymmetric system to- specified ground
earthquake excitation along the x-principal
axis of resistance, depend not only on the
static eccentricity ey, the plan geometry, but
also on the member, location, and strength
etc. of the individual resisting element. In
order to simplify this problem without losing
its essence, the predominant system parameters
for the analysis are chosen as follows:
1) ratio of static eccentricity to ly
ey = ey/ly = 0.0 ~ 1.0
2) uncoupled translational elastic period in
the x or y-direction
Tex = Tey = 0.1 - 10.0 sec.
3) uncoupled translational yield force coe-
fficient in the x- or y-direction
S% = S} = 0.1 ~ 1.0
4) aspect ratio of the plan shown in Fig.1
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Fig. 5 Ground motion for analysis
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Aly = 1y/lx = 1.0, 5.0
5) restoring fofce characteristic of resis-
ting element shown in Fig. 4
a) force-deformation relationship
b} yield function
6) ground motion excitation for response
analysis shown in Fig.5
a) acceleration records
KUTTA's method (R.K.)
b} normalized characteristic velocity
spectrum : for VPRA and APRA
The analytic results are shown in Figs. 6-8 in
which the abscissas denote the parameter ey'

for RUNGE-

or Tex, and the ordinates denote the maximum
responses,
dxlm: the max. lateral displacement of the
element X1 in the x~direction
Wdsm: the max. deformation energy of the
whole system
Wdxm: the max. deformation energy distri-
buted to elements X1 and X2
Wdym: the max. deformation energy distri-

buted to elements Yl and Y2

5 DISCUSSION AND CONCLUSION

dxim is the maximum translational displacement
of the elements. The results of Jxim~Tex based
on VPRA/APRA are shown in Fig. 6 by logarithmic
coordinates. It is found that the results of
VPRA/APRA agree very good with those by R.K
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Fig. 6 Comparison of Max. displacement
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except that there are somewhat overestimates
for shorter Tex in VPRA and for longer Tex
range in APRA. Therefore, for the application
of PULSE RESPONSE ANALYSIS, it 1s appropriate
to use VPRA in Tex2Tgx and APRA in TexsSTgx.
Fig. 7 shows the total deformation energy of
the system. It is evident that Wdsm appear to
be constant in despite of ey changing. Fig. 8§,
illustrates the distribution of the deforma-
tion energy to the elements inthe x- and y-
directions. With ey increasing, the distribu-
tion to Y1 and Y2 1is getting increase while
the one to X1 and X2 decrease. It is noted
that the eccentricity affects greatly the
response of elements not only in the eccentric
direction, but also in the noneccentric one.
In summary, a method based on PULSE RESPONSE
ANALYSIS is presented to evaluate the maximum
responses of asymmetric structures, and
applied to an idealized monosymmetric system.
Comparison with results by a time-history
analysis indicates that the proposed procedure
gives reasonable estimates of the responses.
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