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Earthquake response of arbitrarily shaped structures in fluid
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ABSTRACT: The dynamic response of arbitrarily shaped offshore 3-D structures subjected to high-frequency
horizontal ground excitations is investigated theoretically based on a Green's function approach. The motion of a
structure is idealized as a lumped-mass model with multiple degrees of freedom, and the surrounding fluid is assumed
to be linearly compressible and to undergo small-amplitude irrotational motion. The influence of three-dimensional
solid geometry and fluid compressibility on the dynamic response is demonstrated for a tower-structure of elliptical

cross-section.

1 INTRODUCTION

Concrete gravity-type oil production and storage
platforms for deep water usually have huge multiple
columns. Earthquake analysis of such offshore
structures, such as a tripod tower for 300 m-deep water,
requires special considerations due to the interactions
between fluid and structure.

Several different solutions for earthquake-induced
hydrodynamic pressure on flexible cylindrical towers of
circular cross-section surrounded by a compressible fluid
have been published. They include those by Liaw and
Chopra (1974), Mei et al. (1979), Williams (1986), and
Tanaka and Hudspeth (1988). The contribution of the
fluid added mass to changes in the natural period of the
structure and the significance of fluid compressibility
have also been investigated. Liaw and Chopra (1975)
and Kokkinowrochos and Tharos (1988) have obtained a
solution for the hydrodynamic pressure on arbitrarily
shaped bodies of revolution with a vertical axis. Goyal
and Chopra (1989a, 1989b) have investigated the
dynamics of axisymmetric intake/outlet towers of non-
uniform cross-section, considering both foundation
interaction effects and the influence of interior and
exterior fluids which were considered incompressible.
Recently, Williams (1991) obtained a solution for
axisymmetric intake/outlet towers in which the influence
of both interior and exterior compressible fluids was
considered; appropriate Green'’s functions led to a pair of
coupled line-integral equations. However, in the above
studies no acceptable hydroelastic solutions have yet
been developed for 3-D offshore structures with arbitrary
geometrical shapes.

In this work, a new Green's function, a resolvent
kernel, has been developed which already satisfies the
seabed boundary condition, the free surface boundary
condition, and the radiation condition. As a result, only
the boundaries of fluid domains which are in contact
with the structure need to be discretized. To treat the
-singular behavior of a Green's function, we have
developed two kinds of function; one is derived by an
eigenfunction expansion technique and the other is
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Figure 1. Definition sketch.

derived by a mirror image technique. Our adaptive
method for treating singularities is different from the one
adopted in surface-wave diffraction problems by Fenton
(1978).  Explicit results are presented for the
hydrodynamic restoring force, the base shear force,
dynamic displacement, etc., for an offshore tower of
elliptical cross-section. .

2 MATHEMATICAL FORMULATION

The fluid-structure system under consideration is shown
in Fig. 1. An arbitrarily shaped structure is surrounded
by water of uniform depth, h. The ground is subjected
to horizontal motion of amplitude ap and frequency ® in.
a direction o from the x-axis, so a(t) = ag-exp(iot).

The fluid is assumed to be linearly compressible and its
viscosity is negligible. The velocity potential ®(n,y,z,t)
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can be separated into a sjationary part, ¢(x.y.z). and a
time dependent part, exp(iot): that is, ¢(x,y.z,l) =

o(x,y,z)exp(ior). . o
The small-amplitude. irrotational fluid motion is
governed by the wave equation in Cartesian coordinate:

0)2
Vip+—6=0 inTT M
pE;
where c is the acoustic speed in water (c=1430 m/sec at
15°C) and v? denotes the 3-D Laplacian operator. The
boundary conditions on ¢(x.y,z) are

6=0 onT; (2a)
0dp/oz= onT, (2b)
op/on=V, onT, (2¢)

where V,, denotes the normal velocity component of the
body's surface and n is the unit normal inward the body.
In addition, the potential ¢(x,y,z) is required to satisfy
the radiation condition at infinity

The motion of the structure is idealized as a lumped-
mass model with three degrees of freedom, as shown in
Fig. 2. The equation of motion for structure when acted
on by fluid pressure may be written in the matrix form.

(m)({d}-{a})+[c){d} -{a})+ [K1({d} ~{a})
— -[MYa}-{5) ©

where [M] is the mass matrix, [C] is the structural
damping matrix, [K] is the stiffness matrix, {d} is the
absolute displacement vector of lumped mass, {a} is the
ground displacement vector, and {f} is the vector of
hydrodynamic restoring force acting on the lumped
mass. Since the major horizontal displacements at each
lumped mass are caused by bending deformation, since
this is a tower-type structure, the equivalent shear spring
constant in the stiffness matrix is determined from the
beam stiffness. Vectors {d} and {a} are expressed in
terms of each component of displacement.

T o
{d}={d.1. 1.0,y d,,.0,,} €% (4)
{a}= {ax,ay,o, ..... ,ax,ay,o}re"‘“' ®)
where
a, =a,cosa;a, =a,sina (6)

Vector (f} is prescribed in terms of the restoring force
due to hydrodynamic pressure.

{f} ={f;|‘.fyl'f;| ...... ,f;m_f;myj;m}'reiu (7)

A solution for the equation of motion, Eq. (3), is given
by:

{d}=[AI"[BYa}~[4]" {1} @)

where .
[A]= -0 [M]+i0[C)+[K] 9)
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Figure 2. Lumped-mass model idealization.

[B]=iw[C] +[K] (10)
when (f} is known in Eq. (8), the dynamic response
{d} at each mass point of the structure can be
determined. The components of restoring force at each
mass point may be evaluated by integrating the
hydrodynamic pressure, which is obtained by the
linearized Bernoulli equation, over the surface area of the
body AT, ,as shown in Fig. 3.

{furkt)

r
=—ip |, 0dT{n,,n,.Ln, ~Ln } (11
where p is the fluid mass density, nx and ny denote
directional cosines with respect to the x anJ y axes,
respectively, and Ix and ly denote projected arm lengths
in the x and y directions, respectively, from the twist
center to the point on the body where the pressure acts.
The motion of the body's surface can be described in
terms of the displacement components, dxk, dyk, and
02k, associated with the lumped mass point k, as shown
in Fig. 3. Therefore, the normal component of the body
surface displacement at mass point k, W, is expressed
as:

Vi =[dun, +dyun, +6,(Ln, —4n ) (12)

The time derivative of W is equal to the normal velocity
component of the body's surface Vp, at mass point k;
thus, the kinematic boundary condition on the body's
surface, as given by Eq. (2c). may be rewritten in the
matrix form.
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Figure 3. Motion of lumped-mass and discretization of -
the body surface.

{00/ 0n} = iw[N]([A]"[Ba}~[A]{f}) (13)

where {8<b / all} denotes the normal velocity vector of
the body's surface and [N] denotes the unit normal
matrix defined in terms of nx, ny, and (Ixny-lyny).

3 SOLUTION BY INTEGRAL EQUATION
APPROACH

The Green's function G(x,y,z;€.n.C) for the boundary
value problem defined in Egs. (1), (2a), and (2b) must
satisfy

2
VG + c—:Z—G ==§(x-E)y-n)(z-¢) inIT (14)
G=0 onT, (15a)
0G/dz=0 onT, (15b)

where 8( ) is the Dirac delta function. In addition, the
Green's function is required to satisfy the appropriate
radiation condition.

Applying the eigenfunction expansion method, we
developed a suitable Green's function as

z—smk z-sink - H,2(A,R)

nl“

G(x.y.zEnL) =

+21;£—smk' -sink,§- K, (AR)

(16)

where Hy(2) is the zero-order Hankel function of the
second kind, K, is the zero-order modified Bessel
function of the second kind and

k,=(2n—-1)m/2h:n=123. (17a)

A=w/c (17b)
=2 —k? in<s (17¢)
=k?-N\ n>s (17d)
R =(x-&)f +(y-n)’ (17e)

where s is the largest integer satisfying the condition [A2-
kn21>0. Eq. (16) satisfies the radiation condition given
by

. G .
'IZI_I)T}.\/—R;(-8?+11"G)=O onl, (18)

The effect of including the fluid compressibility is that
two types of eigenmode appear in the Green's function; a
propagating eigenmode for A2-k,2>0 and an evanescent
eigenmode for A2-kn2<0. When the dimensionless
frequency, Q=2wh/nc, equals unity, the first cut-off
frequency, w, is given by w=mnc/2h. It can be shown
that at excitations below the first cut-off frequency there
is no hydrodynamic radiation damping due to acoustic
waves in the solution, only the added mass contributes to
the hydrodynamic restoring force.

When R=0 in Eq. (16), the Green's function exhibits
singular behavior. The fundamental solution satisfying
the governing equation given by Eq. (14) is obtained by

1.
G(x,y,:E,0.8) = I-n-;e"“ 19)

where
=(x=&f +(y-m)' +(=-8&)

Equation (19} satisfies the radiation condition given by

(20)

lim r(%g + le onTl,

r—eo r

. n

In order to satisfy the bottom and free surface boundary
conditions given by Egs. (15a) and (15b), the mirror
image technique is applied.

1 e® o™ - . et i
G=—|—- + -1 —+
44 roon 2'{( )( g n

@2)

where
r={(x-&f +(y-n) +(=-¢)’} (23a)
p={E- - 47T 3w

2 2 R
n={(x-8f +(r-n +(z-C-20} " 230
+(z=g+ 200} 230)

(x-€)
r_,={(x EY +(y- n) +(z +§+2nh)} (23e)
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re={(x-Ef +(y=n) +(z 40~ 2nh)2}”l (23f)

Applying Green's second identity to ¢ and G over the
fluid domain, 1I, yields

99

1 oG
-2-¢(§,n.c) = fr,(¢3;—05;)dr (24)

Equation (24) is a Fredholm integral equation for ¢ on
the immersed body's surface. This integral equation
may be solved numerically by discretizing the area of the
integration into a number of small mesh elements.

The Green's function given by Eq. (16) has the
property of rapid convergence; however singular
behavior is exhibited when the point P(§,n.) and the
point Q (x,y,z) are close to each other. On the other
hand, the Green's function given by Eq. (22) converges
slowly, but it is possible to carry out integration even for
the singular kernel. When A,R>0.1-0.3, the Green's
function given by Eq. (16) is appropriate, while if
knR<0.1-0.3, Eq. (22) is better.

Once the values of ¢ on the body's surface have been
determined, the dynamic response of the structure is
obtained using Eq. (8). The total x-component of
hydrodynamic restoring force Fpx may be obtained from

F,, =—iopfp on,dl (25)

The base shear force of the structure Fiy, is given by

Fo=F,-o'Y M(d,-a,)

k=1

(26)

.4 VERIFICATION OF THE NUMERICAL METHOD

To verify the numerical method presented here, several
comparative calculations have been carried out on
circular cylindrical structures.

The results given by the present method and the
analytical solution by Tanaka and Hudspeth (1988) for
the hydrodynamic restoring force acting on the rigid
cylinder are composed in Fig. 4. Four values of the

cylinder's radius/water depth ratio are investigated. In

all cases, very satisfactory agreement with the numerical
results is obtained. This comparison demonstrates that
our new Green's functions are correct.

Figure 5 compares the numerical results and the
analytical solution for total hydrodynamic restoring force
and the base shear force on a flexible, squatty cylinder
(ro/h=0.25). The cylinder is idealized into a 10 discrete
lumped-mass model and the circumference of the
cylinder is discretized into 16 elements. The error in the
Ist and 2nd mode natural frequencies in air is less than
1% when calculated by the lumped-mass model
compared with the exact results obtained through
continuous beam vibrations. The numerical results
shown in Fig. 5 demonstrate good agreement with the
eigenfunction solution.

Figure 6 illustrates the vertical distributions of the
amplitude of the dimensionless horizontal dynamic
response; the dimensionless added mass; and the
dimensionless hydrodynamic radiation damping
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Q=w/(xc/2h)

Figure 4. Total hydrodynamic restoring force on rigid

cylinder.
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Figure 5. Total hydrodynamic restoring force and base
shear force on flexible, squatty cylinder (rg/h=0.25).

coefficient per unit length at the dimensionless frequency
Q=1.64. Again, the numerical results and the analytical
solution are in good agreement.

5 NUMERICAL EXAMPLE

As an example, numerical results are presented here for a
tower with an elliptic cross-section of which major-axis
is 30 m and minor-axis is 24 m, a height of 100 m, and a
wall thickness of 2 m. The structural data for this tower
are listed in Table 1. The structural damping, C in Eq.
(3), is taken to be zero. The tower structure is
discretized into 16 lumped-mass nodes and the immersed
surface is discretized into 17 (vertical) x 16
(circumferential) panels.

Figure 7 shows the dynamic displacement in the x and
y directions at top of the tower, and the corresponding
phase angle with dimensionless frequency Q. Since the
example tower is not a solid of revolution about the z
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Table 1. Structural data for example tower.

ld, | /asine

ldyl/asina

— - - Q.21 0-30
Major axis Minor axis
Stiffness (KN/m?)  4.849x10"7  3.381x107! 740 T40
Mass distribution (kg/m)  4.085x10%  4.085x10°
Ist natural frequency in air: (Hz) 1.928 1.610 g 20 T20
2nd natural frequency in air: (Hz) 12.08 10.09 in air in water
20 40 N 20 40
40 20 |d, | /agosa <0 2.0 [ d | /ag0sa
10 T T T T T T T T 2.0 in water L
./ ro/h =025 / / 2.0 i
08 i \\ 40T 4.0+
Solution Figure 8. Trajectory of the dynamic motion of top
< o6l C,:----- lumped-mass node at Q=2.1 and Q=3.0.
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Figure 6. Added mass (C,) and damping (Cgq) coeffi-
cients per unit length and dynamic response for flexible
squatty (ro/h=0.25) flexible cylinder at Q=1.64.
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Figure 7 Dynamic displacement and phase angle of top
lumped-mass node in x and y directions.
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Figure 9. Total hydrodynamic restoring force in x
(major axis) and y (minor axis) directions.

4.0

axis, the resonant frequency varies with horizontal
direction. It is demonstrated that the hydrodynamic
damping effects on the dynamic response amplitude near
the 2nd natural frequency (2=1.5-2.0). It should also
be noted that the damping due to fluid compressibility is
more effective in the x direction.

The trajectories of the dynamic motion at the top node
for one excitation period are illustrated for dimensionless
frequency Q=2.1 and Q=3.0 in Fig. 8. The direction of
the ground excitation is taken to be a=45°; however the
dynamic response of the top node demonstrates motion
in different directions for Q=2.1 and Q=3.0. In
addition, the trajectories form oval orbits. The reason
for this is that the phase delays due to hydrodynamic
damping are different for the major axis and minor axis.
The trajectories of the dynamic movement at the same
node when the tower is exposed in air, are also
illustrated for reference. In this case, only reciprocating
motion is observed because there is no hydrodynamic
damping.

Figure 9 shows the hydrodynamic restoring forces in
the x and y directions. From the comparison between
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Figure 10. Total hydrodynamic added mass force and
radiation damping force in x (major axis) direction.
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Figure 11. Vertical distribution of added mass (C,) and
damping (Cq) coefficients at 2=0.4 and 2.475.

Fig. 7 and Fig. 9, it is observed that the hydrodynamic
foré:cs are strongly related to the dynamic motion of the
body.

The hydrodynamic restoring force consists of two
components: one in phase with the ground acceleration
and another in phase with the ground velocity. Figure
10 shows the added mass term which is the real part of
Fhx and the hydrodynamic damping term which is the
imaginary part of Fpy. The hydrodynamic damping is
dominant near the 2nd resonant frequency: and
correspondingly, the added mass abruptly changes at this
frequency. Figure 11 illustrates the vertical distribution
of the added mass coefficient C, and the radiation
damping coefficient C4 per unit length for Q=0.4 and
2.475. This comparison implies that the compressibility
of the fluid is important at the 2nd resonant frequency.

6 CONCLUSION

The boundary integral equation method for the fluid
domain and the lumped-mass method for the structural

domain have been used to calculate the hydrodynamic
force and associated dynamic response of an arbitrarily
shaped 3-D offshore structure to horizontal ground
excitations. Two new Green's functions have been
developed to overcome. singular behavior and to force
quick convergence. The new Green's functions and the
combined BEM and lumped-mass method have been
verified by comparing numerical results with an
analytical solution based on an eigenfunction expansion.
Numerical results have been presented which illustrate
the hydrodynamic restoring forces and dynamic response
of a tower with an elliptical cross-section. Based on
these numerical results, it is shown that consideration of
the three-dimensional geometry of the tower is important;
this is because the dynamic response of the tower traces
oval loci due to hydrodynamic damping.
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