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On the use of residual shapes in modal analysis
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ABTRACT: SQme cqnclusions about the use of residual shapes in modal analysis are
presented in this paper. The main idea is to demostrate how the method becomes
useful only in those cases in which it is formulated as the static correction

methods are.

1 METHOD DESCRIPTION

The dynamic equilibrium equation, for
a linear multi-deqree of
freedom system is expresed as

MX+CX+KX=-MJIUg (1)

Where M, C, and K are the nxn mass,
damping and stiffness matrices. J is a
vector whose components are the
displacements at each degree of
freedom when a unit displacement is
applied to the supports in -the
direction of the earthquake. X is the
vector of relative displacements and
g is the ground acceleration.

As usual, damping matrix is supposed
to be able to transform
diagonal one when projected over the
modal basis. '

When the change --to normal
coordinates is performed, the system
becomes:

2 L; .
51"'2('_{0)_{5_{*‘-‘);‘51: _Fus(t) (2)
- i

{; : Damping coefficient.
m; : Modal Mass
L; : Participation Factor

It is usual to formulate system (2)
only for a few degrees of freedom "m",
(m<n). In the seismic case these
correspond to the lowest modes.

The main idea in the method treated’

herein is to add to. the truncated
modal basis a new vector which takes
into account the effect of neglected
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- modes.

into a

This new vector, called
"residual", is defined simply as:

Lig, ®

o, =
izme1 My

in which ®; are the

neglected
eigenvectors.
This formula is not valid for

practical use, as it is based upon the
modes whose computation is intended to
avoid. Instead of that, the following
expression is preferable:

I L
P, =J- g, “@
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derived from :-
n ’ ’
L.

= iy, 5
J=Y — &, (5

easy to be demostrated. Developing the
right-hand side :

m n
L.
J = E .Elcbi + 2o, =
1=1 1 itma My (6)
m Li -
= __Qi + ¢R
=

expression (4) is. obtained.

And so, the ease with which the new
vector can be computed becomes clear :
it is only needed to substract from J
vector each computed eigenvector
multiplied by its participation



factor. .
Also it is simple to demonstrate the

orthogonality of the residual yector
in respect to the truncated basis :

n
L, ,
OIMD, = QEM[.E thj 1=0; i=1,2,..m
F=m+1 5
(7)
This is why the inclusion of this new

vector results in a new uncoupled
equation :

Ly
8o+ 200t o+ 0aEg= —;nﬁusm (8)
R
Where :
DL KD
©, = ——é——ﬂ ; residual "frequency"
: QMD,
[ ; residual damping coefficient
L, ; residual participation factor
my ; residual mass coefficient
This new equation represents the

work done by the part of the load
normal to the truncated basis.

2 INTEGRATION

The total response of the system is

n n
X=E X1-=Ed>iE1-(t) (9)
i =
In general, modal displacements;(t)
are
L, V.(t
g, - - o) (10)
m; W,
Where V;(t) is the response of a

single degree of freedom system with
frequency ®; and damping ratio {; to
the considered earthquake.

If the frequency of the excitation
is much lower than that of a
particular mode, then it is possible
to ignore inertial and damping forces.

In that case, and making zero the
firts two terms in (2), a simple
expression for equation (10) is

obtained:
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Ly (8)

m; @

§:(8) = (11)

Thus, for modes having the largest
frequencies :
L; ugz(t)
Xi<t) = _(pi;z_l_s_’_{_ =
L. 1 W (12)
= —K’1M¢1F‘ﬁ5(t) = -K1Q;
i

in which the vector :

L
0, =M®,; ﬁas(c) (13)

1

is called "equivalent load”.

If it is admitted that the
frequencies of the n-m modes included
in the residual shape are much higher
than that of the excitation, then it
is possible to write

- 1 = Q Li “
i§l x(8) =K M[i§1 i-ﬂ-l_;] ds () = (14)

= -K'M®, U(t)

If the integration is performed by the
response spectrum method, a parallel
formulation can be developed :

DX, =@ [ &1, (15)
In general, the maximum modal
displacement is
= Li Su(wz)
(8] = " o (16)
Where S, the spectral pseudo-

acceleration. Again, for the a highest
frequencies we get :

L. [ug]
(&), =-—%-——Tmx a7
m.i (O
The maximun ‘'value of ground

acceleration is usually called Zero
Period Acceleration ( ZPA ).Thus :

(x.] .. = -@ L1 12PA] _
14 max lmi wz'
i (18)

L.
= -K'M®, =2 [ZPA] = -K1Q,;
m.

1



and the expression for the equivalent
load is now :

0; = M<I>iﬁ[sz]

mi (19)
If, as 1in ‘'the former case, the
frequencies of the "m-n" modes

included in the residual shape are
much higher than that at which the
spectrum reaches the Zero Period
Acceleration, .it is possible to write:

n

E [Xj]max =

i=m+1

n

=K'M[ Y
i=m+1

= K'M®, [ZPA)

. 2
Qiiﬁj [ZPA] = (20)
m; -

It must be pointed out that the
results given by equation (20) are
theoretically exact. In this case no
assumption is needed regarding
inertial or damping forces.

If any 1low frequency
included in the residual shape,
equations (14),(20) can not be
written. In fact, those equations are
based upon the perfect correlation
existing between the highest modes,
but this correlation is lost when a
low frequency mode is included.

Thus there are no arguments to
support the method in that case. Only
in a few special cases (when simply
one mode between those included in the
residual shape are significant, or
when this shape is composed of several
local modes) the method becomes
useful. This was pointed out in [1].

Unfortunatly, the analyst can not
recognize those cases "a priori".

mode is

3 EXAMPLES

In this section an example similar to
those proposed in [1] is presented.
The idea in doing this is to analyse
the reason for such good results as
those reported there.
Thus a typical building structure is
studied. Its main characteristics are
collected in table 1.
The values of elastic and Poison
modulus are :
E = 2.06 E10 N/m?
v = 0.3
Columns are modelled as bars of unit
area and zero density. Only horizontal
translations are considered.
In order to obtain base shear and
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moment easily, a very stiff spring is

used to simulate the fixed-end
condition.
Table 1. Characteristics of building
structure.
FLOOR MASS HEIGHT | INERTIA
(ton) (m) (m‘)

MAT 800. 0.00 ~——-

1 472.1 3.5 0.278

2 472.1 6.45 0.217

3 472.1 9.40 0.195

4 472.1 12.35 0.154

5 472.1 15.30 0.130

6 472.1 18.25 0.108

7 472.1 21.20 0.083

8 472.1 24.15 0.071

9 472.1 | 27.10 | 0.071

10 472.1 30.05 0.047

11 472.1 33.00 0.037

12 472.1 35.95 0.029

13 472.1 38.90 0.025

14 472.1 41.85 0.025

15 472.1 44.80 0.004
Earthquake 1loads are specified by

means of Newmark™ s design spectrum,
scaled to a maximum ground
acceleration of 10% of g.

Figure 1 shows the distribution of
equivalent loads. This figure allows
for a fast understanding of the
relative importance of each mode in
relation to total response.

Some ideas can be extracted :

1 The relative importance of each
mode diminishes as the mode number
increases, even when their associated
frequencies remain still below the ZPA
point. This seems to be a very general
trend in building structures. ( in
fact, that is why the use of only a
few of the lowest modes renders very
good results).

2 This trend is interrupted at the
last mode. This is an "artificial"
mode in the sense that it is the
result of a modelitation process and
has no physical meaning. The base
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shear value of this last mode
represents more than 10% of the total
base shear.

3 The frequency associated with the
artificlal mode is, by definition,

very high. Its response can then be
considered static and computed from :
X, (E) = -K1MD -L—l‘-ﬁ (t)
16 16 m16 S (21)
= -K'Q

Due to the special shape of this
artificial mode, (it only has a no
null component: the one associated to
the node adjacent to the support) the
equivalent load vector formulates very
easily : all its components are zero
except for the first one, which has a
value:

g(t) = mig(t) (22)
Where "m" is the mass of the
foundation. When integration is

performed by the
method, we have :

response spectrum
qg(t) = m[ZPA] (23)

4 If a residual shape is used in
this case, it could include not only

3918

the artificial mode, but also the
seven or eight last modes. There would
not be any apreciable difference. In
fact, almost all of its response would
be due to the artificial mode ang
could be obtained simply by formula
(23).

4 CONCLUSIONS

From this analysis it is possible to
conclude:

1 When the residual shape includes
only high-frequency modes, it becomes
a feasible formulation for static
correction methods. Then all the
advantages of these methods are
directly applicable.

For building structures under
earthquake loads, those kinds of
methods are, in general, useless (due
to the fact that only the lowest modes
are excited ).

2 The inclusion of low frequency
modes in the residual shape will,
generally, produce erroneous results.
Some exceptions to this rule can be
postulated but, as they are based on
the knowledge of the neglected modes,
become useless.

3 When the supports are simulated by
means of placing stiff springs, the
effect of the mass of the structure
attached to the spring on the total
reactive boundary force can be
computed by performing very simple
calculations: there is no need to use
any residual shape.
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