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A proposed simple model for the study of seismic inelastic torsional coupling

M. Bruneau

Civil Engineering Department, Universiry of Ottawa, Ont., Canada

ABSTRACT: A simple general purpose model has been proposed for the study of seismic inelastic
torsional coupling. The building code indirect influence in lessening torsional redundancy, as well as the
necessity to satisfactorily capture the non-linear inelastic behaviour of torsionally coupled structures, have
dictated the minimal characteristics required of this model. A simple model to conservatively estimate
structural response is an acceptable alternative considering the stringent and impractical geometric and
parametric requirements needed if identical strnctural response is to be ensured in the non-linear inelastic

range.

1. INTRODUCTION

The considerable difference in the seismic dynamic
response between symmetric structures and structures
with stiffness and/or mass eccentricities in plan has
long been recognized. Whenever the centres of
rigidity and/or strength of a structure do not coincide
with its centres of mass, translation in horizontal
directions will be accompanied by torsional
movement in plan, whether or not there is rotation in
the ground motion.

It is well established that equations of motion of
torsionally coupled structures are generally amenable
to a format for which all structures sharing the same
values for a few key parameters encapsulating their
structural characteristics, irrespectively of their
geometry, will share the same linear elastic response
at a given reference point. Unfortunately, the same
cannot be said of non-linear inelastic structures; a
complex interdependence of the number, location,
and hysteretic characteristics of structural elements
directly impact on the behaviour of these structures.

A wide variety of structural models and
configurations have been recently used to investigate
the inelastic response of torsionally coupled
structures. Some researchers replaced the physical
structure by a single-element model having an
interaction surface mapping the shear-torsion space
(Kan and Chopra 1979). Others studied the
behaviour of a unisymmetric structure having four
identical columns of circular cross-section under bi-
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directional earthquake excitations (Tso and Sadek
1984). More frequently, the behaviour of
monosymmetric structures having two or three lateral
load resisting structural elements (LLRSE) sharing
identical yield displacements and bilinear hysteretic
model under unidirectional earthquake excitations
was studied (Syamal and Pekau 1985, Bozorgnia and
Tso 1986, Bruneau and Mahin 1990, among many).
Resulting observations on the effect of various
parameters on the inelastic response of torsionally
coupled structures have generally not been in
agreement. This can be partly attributed to the
diverse analytical assumptions and approaches that
were adopted in each study.

Consequently, a simple general purpose model for
the study of seismic inelastic torsional coupling is
needed, and some aspects of this problems are
reviewed herein.

2. EQUATIONS OF MOTION

The general equations of motion around the centre of
mass for single-story torsionally coupled structures
are well known and have been derived by others
(Kan and Chopra 1976). For monosymmetric
structures (i.e. structures having one axis of
symmetry) and neglecting torsional seismic
excitation, the equations along the y-axis (axis of
symmetry) are decoupled, and the resulting coupled
translational-torsional equations of motion are
simplified to:
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where K, and K, are the system’s translational
(along X) and rotational (around 6) stiffness for the
resulting two degrees-of freedom system, and e is
the static eccentricity of this system. The mass of
the floor is m, its radius of gyration r, v, and V, are
the translation displacement and acceleration of the
centre of mass in direction X, v, and V, are the
rotational displacement and acceleration of the floor
around a vertical axis, and V,, is the ground
acceleration in direction in direction x. The
torsional stiffness of individual lateral load resisting
elements is neglected.

Obviously, from Equation (2), in the linear elastic
domain, all structures sharing the same (e/r), w, and
Q will have the same response v, and rv, at their
centre of mass. As will be demonstrated later, this
does not hold in the non-linear inelastic domain.

3. BUILDING CODES’ INDIRECT INFLUENCE

It is noteworthy that many current building codes
indirectly promote the reduction of plan redundancy.
This is illustrated in the short example following.

In an apparently symmetric building, the
accidental eccentricity provision mandated by the
equivalent static seismic lateral force design method
of most building codes provides a minimum design
eccentricity which is thought to account for
uncertainties in mechanical properties, mass
distribution, and ground motion. This accidental
eccentricity is usually set by different codes to a
small percentage of the maximum plan dimension.

For a monosymmetric ‘structures, should only two
lateral load resisting elements be present in the
principal direction (Figure 1a), an accidental
eccentricity of 5% of the maximum plan dimensions
will increase the design forces in each element by
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10%. Consequently, the design translational and
torsional strength will also increase by 10%. If,
instead, four equally spaced elements with equal
stiffness are now considered (Figure 1b), the same
accidental eccentricity requirements will increase the
design forces by 18% for the edge elements and by
6% for the inside elements. The resulting design
translational strength is thereby increased 12% and
the net torsional strength in increased 17%, and,
therefore, the more redundant structure is only
achieved at a premium in material and labour.
Consequently, strict adherence to building codes’
seismic provisions could make the two element
system a more economical design alternative, which
is apparently discordant with earthquake
engineering’s traditional wisdom that redundancy
improves the ultimate seismic resistance of
structures.

This least cost observation suggests that a two
LLRSE monosymmetric model is realistic. Hence,
one such model is proposed for the study of seismic
inelastic torsional coupling. For the chosen model
illustrated in Figure 2, all floor diaphragms are
assumed to be infinitely rigid in their own plane,
elements in the orthogonal direction are ignored for
the sake of simplicity and lateral load resisting
elements are assumed to be equidistant from the
centre of mass. Nonetheless, this simple general
purpose model of minimal complexity must be able
to capture the essence of the particular behavioral
features of seismic inelastic torsional coupling-in
order to be acceptable. This remains to be verified.

4. CASE COMPARISON OF STATIC, DYNAMIC
ELASTIC AND INELASTIC RESPONSES

In an ideal design process, where the engineer has
unrestrained freedom on the structural layout and
dimensioning, the LLRSEs can be proportioned such
that the centre of resistance will coincide with the
centre of mass (unless the centre of mass is not
contained between the resisting elements, as would
be the case for a building with a single eccentric
core). In the special case where only two structural
elements are provided for the lateral resistance
system in the x direction, the resulting structure is
statically determinate, and, in consequence, the
lateral shear force must be distributed to the
elements solely by the laws of equilibrium. In this
case, a static lateral force applied at the centre of
mass will be distributed to the lateral load resisting
elements by geometric relations, and independently
of the LLRSEs stiffness. Unfortunately, this may
not always be possible, either due to imposed:
architectural constraints or to the detrimental ,



structural consequences of added non-structural
components ignored during conception, like for
example, the addition of a non-structural masonry
infill in a steel frame structure.

Assessments of the consequence of a larger than
anticipated stiffness can be misleading if performed
by traditional linear elastic analysis methods.
Evaluation of the changed condition by static
analysis, as shown in Figure 3, reveals that the
displacements, while dramatically different than for
the previous symmetric state, are now of equal or
lesser magnitude, indicating that the design remains
safe. The fallacy of this perception can be exposed
by the simple example following where linear elastic
and non-linear inelastic analyses were conducted for
the same structure having two LLRSEs.

For these analyses, the N-S component of the
1940 El Centro earthquake record is scaled such that
the symmetric two-element system reaches a
ductility of exactly four from an inelastic step-by-
step dynamic analysis. Then, the stiffness and
strength of one of the elements is increased by 50%
as on Figure 3. Elements are modeled as bi-linear
hysteretic with 0.5% strain hardening. The results
for both the elastic and inelastic analyses are
presented in Figure 4. These results demonstrate the
large amplification of edge displacement produced
by the inelastic torsional coupling of the structure.

The large corresponding ductility demand on the
weaker element obtained can not be predicted from
either the static analysis or the elastic dynamic step-
by-step analysis. This increase in ductility demand
can be explained by examining the instantaneous
state of the equation of motion.

5. INELASTIC STATUS OF EQUATIONS OF
MOTION

During response to an earthquake excitation, the
initiation of yielding in one of the LLRSEs will
affect the instantaneous properties of the physical
system, such that the equations of motion for the
monosymmetric structure can be re-written as:
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where all variables remain as previously defined
with the exception that the primes (*) are used to
represent instantaneous properties. It is noteworthy
that the stiffness matrix is equivalent to a tangent
stiffness in which not only the translational and
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the initiation of yielding, but also the value of the
static eccentricity of the system (e’).

Re-arranging the equations, as per the previous
section, leads to instdntaneous values of Q’, @’ and
(e’/r). Obviously, the aforementioned conditions
necessary to obtain equivalent elastic response v, and
rv, at the centre of mass are not sufficient to ensure
the same match in the inelastic domain. For two
structures to share identical inelastic response, their
tangent stiffness properties must match throughout a
given earthquake excitation. This additional very
restrictive condition makes the equivalence of
complex structures with simpler models, or
structures with different types of LLRSE models,
virtually impossible, hence the incentive to select a
simple general purpose model which will lead to
conservative assessments of the seismic inelastic
response of torsionally coupled structures. Toward
that goal, selecting a two LLRSE system will ensure
very large reductions in K’ and K’, coupled with
large increases in €’, when yielding occurs in one of
the LLRSE.

Thus, a minimal structural system with two
LLRSE can apparently be useful in acquiring a
fundamental understanding of how various
parameters are affecting the inelastic torsional
response. Conservatively, LLRSE oriented
perpendicularly to the unidirectional earthquake
excitation can be neglected; it is the authors’
experience that those are not always located
favourably to improve the torsional resistance.

6. GEOMETRIC EQUIVALENCE OF NON-
LINEAR INELASTIC STRUCTURES

In spite of the very restrictive aforementioned
conditions necessary to produce equivalent
torsionally coupled structures through their inelastic
response, some simple geometric constraints can still
be established to define equivalent structures of
similar plan layout but of different scale. For
example, equivalent structures each with two LLRSE
of equal strength are shown in Figure 5.

Assuming that LLRSEs have a hysteretic bi-linear
model with no strain hardening (elastic-perfectly
plastic), for those two structure of different geometry
to share the same Wy, Wy’, ©g, Oy, (¢/r) and (e’/r),
at all times, it implies that:
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Thus
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and
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where the subscripts A and B correspond to
geometry A and B on Figure 5, and d is the distance
from a LLRSE to the centre of mass (equidistant
elements in this example). Thus, two LLRSE
systems with the same @y, Q, (e/r), and same ratio
(d/r) = D can be of different geometry and still have
the same element response, i.c. identical element
time histories and ductility demands can be obtained
from a wider structure with a larger radius of
gyration as long as the geometric ratio (d/r) is
preserved. This ratio fixes the proportional
geometric configuration of a structure as scaled by
its radius of gyration. It is more restrictive than the
(e/r) ratio.

Similar relationships could be developed for an
infinity of plan layouts and multi-LLRSE systems
without benefiting much the design process. While
it is important to realize the additional constraints
necessary for equivalencing inelastic structures, it is
instead more productive to demonstrate that findings
on the behaviour of relatively simple strutures can
be safely generalized to more complex structures.

7. CONSIDERATION OF ROTATIONAL INERTIA

The influence of the rotational inertia on the inelastic
torsional response is best described when considering
initially symmetric structures, i.e. structures where
the normalized eccentricity (e/r) is zero. In this
case, it is the Q factor that reflects the significance
of r, the radius of gyration of the floor plan, here
taken around the centre of mass. This dimensional
parameter, a physical representation of the mass-
distribution around the centre of mass, is related to
the selected floor plan configuration; although this
property in practice is mostly inalterable by the
engineer, the effects of variation in radius of
gyration on the response of the structures at hand are
of interest.

For a given floor translational mass m, a reduction
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in r will reduce the mass moment of inertia, mr?,
and will simultaneously produce an increase in Q, as

0 = 0o, = (Kym)/(mr’K) =KJ(K > (13)

An initially symmetric structure will respond in a
purely translational manner until yielding of one of
the LLRSE, at which time the mass moment of
inertia of the floor plan will provide an effective
inertia (or resistance) against the introduction of
torsional movement during that interval when the
instantaneous physical properties of the structure
provide a temporary mismatch between the centre of
stiffness and centre of mass. If the mass moment of
inertia is very small (large Q), it is easy to produce a
rotational movement as there is little resistance to
the induction of angular motion. In the opposite
fashion, if the mass moment of inertia is large (small
Q), considerable inertial resistance to angular motion
exists and very little of it may develop. This
phenomenon is graphically illustrated elsewhere
(Bruneau 1992).

8. OTHER FACTORS

Since small changes in the characteristics of even
simple structures are sufficient to ensure that
identical non-linear response of lateral-load-resisting
structural elements (LLRSES) is not possible, then
even the minimal structural system proposed and
deemed sufficient to satisfactorily capture the non-
linear inelastic characteristics of torsionally coupled
structures, can be configured in a variety of different
ways for which dissimilar response is unavoidable.

Admittedly, the type of hysteretic element model
will have a considerable effect on the seismic
inelastic response of torsionally coupled structures.
Nonetheless, since current research still focuses on
improving the basic understanding of the behaviour
of torsionally coupled structures in the inelastic
domain, the consideration of very complex hysteretic
models remains premature. Some studies have
briefly examined the influence of more complex
models in relation to comprehensive parametric
studies on simpler model, but at this time, bilinear
hysteretic models have been the basis of most
research on torsionally coupled structures.

The concept of strength eccentricity, (Sadek and
Tso 1988) equivalent to the corollary concept of
plastic centroid, provides a representation of the
relationship between LLRSESs’ strength within a
same structure. It quantitatively expresses the
observation that the relative yielding levels between
different LLRSEs will directly affect the global
inelastic behaviour. For a bilinear hysteretic model



with two LLRSE and a given set of Q, (e/r) and Ty,
the respective yield displacements between the two
LLRSEs will completely define this inter-element
model relation, and simultaneously locate the plastic
centroid. By analogy with reinforced concrete
theory, the plastic centroid is defined as the point
where a static lateral load must be applied in order
to produce a purely translational displacement when
all elasto-perfectly plastic elements are yielded. The
plastic centroid distance from the centre of mass can
be used as another indicator of the severity of a
structure’s inelastic torsional behaviour. A plastic
centroid distance of zero would produce
simultaneous yielding of both LLRSEs under a
monotonically increasing static loading, although
under dynamic excitation it is not necessarily the
case.

Interestingly, limited studies (Bruneau and Mahin
1991) have indicated that changes in plastic centroid
distance seriously affect the ductility demand of the
LLRSE whose yielding strength is varied, but have
relatively little effect on the weak LLRSE whose
yield strength is kept constant. Therefore, if the
maximum response of the weak LLRSE is of
concern, the proposed simple model with LLRSEs
sharing equal yield displacements is generally
adequate. If the strong LLRSE’s response is also of
interest, its high sensitivity to the plastic centroid
distance makes the inter-element model relationship
a more important issue.

Other preliminary findings indicate that:

» For bilinear hysteretic element model,
modifications of the strain hardening value have
unpredictable effects on the LLRSEs time history
signatures; non-linear inelastic static analysis is
found to be deficient in predicting the effect of
strain hardening on the global behaviour. The
high sensitivity of response to hysteretic model
characteristics requires further consideration in
future studies on inelastic torsional coupling.

+ Conclusions obtained from the results of studies
performed on stiffness eccentric structures could
conservatively be extended to mass eccentric
structures, assuming the comparison remains
within the aforementioned limitations.

« Finally, the proposed model being of single story,
may be unsuitable for the study of complex
multistory structures without some modifications,
especially in the case where ductility demand
tends to concentrate on a few weaker stories;
Analogous limitations also exist for ideal-
symmetric structures. Additional research is
needed.

9. CONCLUSION

A simple general purpose model has been proposed
for the study of seismic inelastic torsional coupling.
The building code indirect influence in lessening
torsional redundancy, as well as the necessity to
satisfactorily capture the non-linear inelastic
behaviour of torsionally coupled structures, have
dictated the minimal characteristics required of this
model. A simple model to conservatively estimate
structural response is an acceptable alternative
considering the stringent and impractical geometric
and parametric requirements required if identical
structural response is to be ensured in the non-linear
inelastic range.
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Figure 2. Proposed simple general purpose model for inelastic structures

the study of inelastic torsional coupling.
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Figure 4. (a) Elastic and (b) Inelastic time history analyses of a two LLRSE structure with Tyx=0.1

seconds, Uspop=4, £2=1.6, and element stiffnesses of k (dotted line) and 1.5 k (solid line); Yield
displacement is 0.12 units.
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