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Random response of plane SCWB frames under severe seismic excitation

Y.Lei & EZiegler

Department of Civil Engineering, Technical University of Vienna, Austria

ABSTRACT: According to the essential feature of earthquake resistant design, frames with strong columns and
wealg beams (SCWB) are preferable. The probabilistic theory of effective loading developed recently for elasto—
plastic structures is extended to analyze the random response of such plane frames subjected to in-plane
earthquake ground acceleration. For redundant framed structures, it is shown by simulation results that the plastic
hinge approximation is simple and reliable. The total displacement responses are split into elastic parts and
inelastic parts. The elastic parts are calculated from the associated linear background structures with initial
stiffness but under updated effective excitations while the inelastic parts are reasonably well modeled by Markov
processes with properties estimated from the responses of the background structures.

1 INTRODUCTION element at each story and a rotational inelastic spring
at each floor level represent this behavior, Fig. 2.

Vanmarcke (1976) developed a semi-probabilistic
approach that was somewhat improved by Irschik
(1986) though the consideration of the updated (&3] m3, Gy
effective earthquake loading of the linear background Els, h3

structure for shear-beam frames. Since shear-beam (s G
designs with plastic zones developed in the columns m2, 2
are hazardous, we extend the approach to the frames El, ha
with swrong columns and weak beams which are
preferable, because the failure of a column is often (gl mi, G

catastrophic but that of a beam will not cause the El,. h
collapse of the whole structures. Plastic zones in the A LA
model are concentrated in the beams. The force— v r wr
displacement relation shows hardening. The latter is Fig. 1 Fig. 2

linear in the case of the plastic hinge model. See also
the recent paper by Bhartia and Vanmarcke (1991)

where elastic -plastic structures with tri-linear
hardening model are considered.

2 STRUCTURAL MODELING

A multi-story plane frame, shown in Fig 1, under
seismic excitation is modeled as follows :

a) The structure is excited by the horizontal
component of the ground motion which is assumed
to be a random process. Axial deformations of the
columns are neglected.

b) The masses are lumped at the floor levels and
their rotational inertia is neglected.

c) Following the strong column-weak beam
(SCWB) design philosophy of moment resisting steel
frames (Eliopoulos and Wen (1991)), columns are
designed to be stronger than beams. Thus all columns
remain elastic and all the plastic deformation is
concentrated in the beams. A linear column - beam
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d) The constitutive relation of the steel beam is

assumed to be ideal elastic-plastic, i.e., o= E(&—€"*).

e) The lateral displacements are not very large and
therefore the geometric nonlinear effects are
neglected. Damage is not included while this effect
has recently been studied by the authors (1991).

3 RANDOM RESPONSE OF SINGLE-STORY
FRAME ( SDOF -~ SYSTEM)

X —

3.1 Equation of motion
L& <4 ElLL

Using the principle of virtual
work, the equation of motion |y EL
for the lateral displacement W(t)
of a one-story frame, as shown
in Fig.3, is derived as

wan I
Fig. 3
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(0 + BW() = ~w(0) + 208 [ Mu®K € . (1)
wh=-L

- ; K:iHAze'dA s

where

§ is the flexibility of the frame (the lateral
displacement of the elastic frame due to a horizontal
unit force at the floor level ) and My is the
corresponding moment distribution along the beam.

W(t) can be split into w*(t) and w(t) as
w'= 2 MB)x (B)E (22)
W(0)+2Lowow(D+DIW(L) =~ We(t) =W () . (2b)

In Eq.(2b), light viscous damping is added.

3.2 Deterministic solution and simulation

A fast and efficient deterministic algorithm is needed
for reliable simulation. Contrary to the standard
incremental stiffness formulation for structures under
severe excitation, Irschik and Ziegler (1989)
introduced the concept of updated internal loadings
which act upon the associated linear background
structures with the primary linear stiffness assigned.

3.2.1 Finite spread of plastic zone

In Eq. (2), the non-compatible curvature is treated as
a fictitious additional loading to be updated in the
course of ime. A time-stepping solution is done in an
incremental formulation. Assuming the initial values

for Ak™ at time tp, Awy is estimated form Eq. (2a)

and using a linear time-ramp function within At, Awp
can be evaluated from Eq.(2b).
Analogous to Eq. (2), the increment of vertical

displacement of the beam at point & becomes
1 -
Av(®) = 2 My Ex)8% (x)dx+5“—§lAw . B

where 8.(§) is the lateral displacement due to a
vertical unit force applied at point € on the beam and

My (§,x) is the relevant bending moment at point x in
the beam, (Fig.3). Thus the increment of curvature
and strain are
Bxp=-Avp€) ; Agp=zAKp . @

The nonlinear equations are solved by means of
the modified Newton-Raphson algorithm for the ideal
elastic plastic stress-strain relation, dividing the beam
into cells, Hayek et al (1990).

The generation of the input is done by Shinozuka
and Goerge (1991)

We(t) = X, V2S(a)Awgcos(@ebx) , )
X

where 6, is uniformly distributed between 0 and 2x.

3.2.2 Plastic hinge model

In the plastic hinge model, plasticity is
concentrated at two plastic hinges at the two ends of
the beam, close to the frame’s corner.

w'=2M,(0)6 , (6a)
W(t) + 2Lowow(t) + wdw(t) = — Wy(t) —W'(t) . (6b)

The incompatible angle of rotation is again treated
as an internal loading. Analogously, the incremental
rotation angle is derived in a time-stepping procedure.
Nonlinear equations are solved in an iterative manner

considering the ideal elastic-plastic M — 8 relation in
the plastic hinge model.

3.3 Results and analysis

Structural parameters of the frame (Fig.3) are selected
EL. /Ely=4,E=210 kN/mm?,h=1=10m,
{=0.02, m=2089 kg, £y = 0.002, My = 9.45%105Nm

Ground acceleration is assumed to be stationary
wide-banded white noise with (one-sided) power
spectrum density S,. A non-dimensional input
parameter H is introduced, Hayek et al (1990)).
H = 032%Se and a = My / Mp*3 is the yield-limit of
W in the plastic hinge model.

For the above two cases, simulation have been
performed. It is noted that although the individual
system response may differ for the above two cases,
there is only a slight difference between the sample
averages. Fig. 4 compares the standard-deviation of
w* for different H .
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However, simulation work in the plastic hinge
model saves much computational time.

Therefore, in the analysis of the random response
of framed structures with SCWB model, the plastic
hinge approximation is simple and reliable.

It is also noted that there exist stationary random
responses for SCWB framed structures under
stationary excitations due to the elastic stiffness of the
columns. On the contrary, drift responses increase
with time for shear-beam frames in the plastic hinge
model (Irschik (1986)).
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3.4 Approximate stochastic analysis

Based on the simulation results above, the analysis is
carried out in the plastic hinge model.

3.4.1 Stationary response under stationary wide-
banded white noise excitation

3.4.1.1 Response of associated background structure

In Eq.(2b), w*(t) appears as an additional fictitious
external loading of the associated linear background
structure. The loading, however, is changed due to
plastic events and an effective input concept is
introduced. We characterize the effective excitation
including the nonlinear influence, by changing the
given external power spectrum density through a

reduction factor Woe [ 0,1 ] . This idea can also be
interpreted from the concept of overall energy
balance, Bhartia and Vanmarcke (1991).

The variance of w is then given by

0‘%/ = E,_O_TES_O. . (7)

4%wid

For the elastic frame, the rotation angle at the
corner and the lateral displacement are related by

9= Q) w, where 0 is the angle of rotation at the

corner due to a horizontal unit force at the floor level.
~\2
o’ =(%) o . ®

In the plastic hinge model, the yield-barrier for 6
is Oy =My /M8

In order to get Yo, a power balance relation is
considered.

W% 1y =2, [w{a0™) 4w lse™)] . o

- »* ) .
where <A9 +>, <A6 >are mean increments of the
nonlinear rotation angle in positive and negative yield
excursion respectively, and K* , L™ are the relevant
mean rates of excursion .
With a certain 6* value, it can be shown from the
analysis of structural elastic deformation that the

equilibrium position for 8 is

6 =6 /2v, v=2(1+6hEl,/IEL) (10)
For low yield-barrier, yield excursions occur in
clumps and a clump of yield excursions may be
viewed as a "single" event (Vanmarcke (1976)), then

pt =90 }exp{-(iefﬁ‘)z]

*onE(NE 202 an

where E{N*}, E[N"} are the mean clump sizes and
Lutes et al (1980) gave an improved semi-empirical

approximation for E {N%}.

The mean yield increments in Eq.(9) are
determined by considering further the energy relation
during a yield excursion.

T.-Ti = AW, - AU (12)

where Ty =0, Ty =—3 mw? AU is the change of
potential energy of the frame in its yielding phase.
This corresponds to the change of elastic strain
energy in the two columns since the strain energy of
the beam does not change. It can be proved that
during a yielding phase,

4EL. .2 M2h
ue) =ﬁlse+%Mye+_—6£Ic ; a3)

AW, = — 2My|Ae‘l is the e plastic work in the hinge

With a certain 6* value, the prescribed background
structure responds in the elastic region about the

‘mean value 8 . Thus yield excursions in the positive

and negative directions must be considered
separately.

w2 _ "o e8] o s6,) 2,007 140

2
ms? - ule"-6,+46") - U{6"-8,) — 2M,46™ (14b)

The increments during a yield excursion is
assumed to be exponentially distributed (Bhartia and
Vanmarcke (1991)). Taking expectations on both
sides of Eq. (14) leads to the quadratic equations for

(s6™). (a0™)
Finally, with certain 6 value, the above nonlinear

equations for yo can be solved iteratively to get
conditional statistics for the background structure.

3.4.1.2 Nonlinear response

There is a change in the nonlinear part response
during each yield excursion. From Eq.(14), this
change depends only upon the most recent value of
9* and therefore it is reasonable to model 6*(t) by a
Markov process ( Grossmayer et al (1981), Bhartia

and Vanmarcke (1991)).
The corresponding FPK equation for the transition

probability density of 8*(t) is
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3 3 . Ch .
8_1: - _a—e‘-{ﬁl(e)p]-*%;?[ﬁz(e)lj] ' (152)

E[20"16')=6]

with Bi(67) =lim
=pr{a0™)+ u‘<A9‘_> s (15b)

-2 . .
. E[A6 7|6 (=0
Bol6) = lim -—————————————[ © ]

i o™ P e upe ]

For stationary response, solving FPK equation
yields

p@)= Lex f 81O (16)
ﬁz ° B'Z(e)

where ¢ is the normalization constant.

Then the unconditional statistical value for the
associated linear structure can be evaluated further on
the basis of the total probability theorem.

3.4.1.3 Results and comparison

Comparison between the approximate results and the
sample averages is made in Figs.( 6-7 ).
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3.4.2 Nonstationary response

The strong motion phase of the seismic input is most
realistically modeled as a nonstationary random
process. Such a process is commonly characterized
by an evolutionary power spectrum constructed from
a stationary random process with a one-sided spectral

power density So(®) and a slowly varying determi-
nistic envelope A(t,0), S(t,w) = A2(t,0)So(w).
Usually, the frequency dependence of A is not
important and the time evolution of A which
accounts for the build-up and die-off segments of
typical earthquake records may be assumed in the
form: A(t) = c [ exp (-at)—exp (-Bn)] , P>t
So(w) is assumed to be wide-banded: band-limited

white noise and the filtered white noise representation
are frequently used, Irschik and Ziegler (1991).

3.4.2.1 Wide-banded white noise

We characterize the effective excitation by changing
the given time envelope function and including

frequency dependence : @(t,®) = AX(t)yo(t,0)
Consequently, the evolutionary power spectrurﬁ
becomes : ¢ (t,w)So.

The response variance has been approximated by
Spanos (1980).

o} = %‘—smﬂoe-zém‘ [oexpl- 2Lagthpr)de  (17)

In order to evaluate g, the power balance equation is

generalized, Irschik (1986), while p*, p-can be
derived analogously to Eq.(11) with the semi-

empirical expression for E{N*} adapted for the
nonstationary case ( Lutes et al (1980)).

(AQ”') , <A6 '_) are still evaluated from the energy
relation durning the yielding phase. They depend also

on the most recent value of 9*(t).

With certain 6*(t) value, the conditional statical
values of background structure are estimated in time -
stepping procedure. ( Irschik (1986)).

The FPK equation for the transition probability

density of nonlinear 6*(t) is given by Eq.(15) except
the two coefficients are time dependent.
The parabolic partial differential equation for the

transition probability density of 6*(t) can be solved
numerically, e.g., the implicit finite difference
scheme of Crank-Nicolson type can be applied.
Evaluation is also made in a time-stepping procedure
compatible with the procedure for the background
structure.

The nonstationary response is analyzed. Time
envelope modulation function is specified by A(t) =
10.13 (exp (- 0.5t) —exp(-t)), H=20,
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Comparison between the approximate results and
simulation values is shown in Figs.(9-10).
Approximate results are fairly satisfactory.
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3.4.2.2 Filtered white-noise representation

The Kanai-Tajimi representation is frequently used

for So(), with So(0) = So = 0.

By analyzing the available records of seismic
ground motion, Boore (1983), however, obtained the
asymptotic behavior : So(w) ~ w?, as® — 0.

Paparizos and Iwan (1988) proposed an improved
model

4L,/ So

So(w) =
[1- (e + 4Lg(av/oy)?

(18)

In the power balance equation, the input power ,
by using a formula of Ohi and Tanaka (1984),
becomes,

E{p:) =E‘12°—5&A2<r>r~‘<wa> ,

Flox) = 4oy + 50 / (Ll -0 + (19)
A58 (0 + ah) + (e + 1)

The nonstationary random response ot the trame
under the same time modulation is also analyzed
similarly. Parameters of the Iwan spectrum are

chosen as /o = 1.5 ; {g=0.25 , H=20 ,

As shown by Figs.(11-12), fairly good results are
obtained from the approximate theory compared with
simulation.
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‘4 RANDOM RESPONSE OF MULTI-STORY
FRAMES (MDOF-SYSTEM )

we take a two-story frame out of the Fig.1 and Fig. 2
as an example and use the plastic hinge model.
4.1 Equations of motion

Using the principle of virtual work, the equations of
motion for lateral displacements are derived as

'Cv‘,+"h5‘2‘v7'z+klw1=—(l+ m)w,

mdn midy (20a)
+ 2k; M2 e; +Mun e;)
W+ 002 4 4 kg, =~ (1 + Ty,
madn (20b)

+ 2k, Mz 91. +Mn 9;)

where 8;; are elements of the flexibility matrix,
ki= 1/m;8;j and Mjjare elements of Green’s
influence matrix for rotations of the column-beam
connections.

The lateral displacements w; , W+ can be split
Wi(t) = wi(t) + wit) 5 Wa(t) =wa(t) + wi() |
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{:;} M M"J j 26:} (21a)

Mo Mzl | g
1 mé]z .
midu {Wx} + [18 g] {:l} =
méy g | \® 2 1)
mydx
1 m2812 /W8+Wf }
- mdy, .
mi&y 1 \ Wg+w2
mxdz

4.2 Deterministic solution and simulation

In Eq. (21), the nonlinear effect renders fictitious
external loading acting on the background structure
and thus modal expansion technique can still be

applied, W =[¢]EI _Then, the principal coordinates
qj are represented by uncoupled oscillators.
g+ 2000+ oig = 22)

where a light viscous modal damping is added and
2
fj:‘(%"""g*z}iﬁ’iwi)/m;z . 23)
1=
—T —

Modal masses m; =¢;[m]¢; and [m] is mass
matrix in Eq.(23b). Participation factors are given by

“‘T[ . - 2
=Q; [ ) I= -.i ’
% =4;m] Ele 24)

—T
% =05 (mle; ,

e

respectively, where g; denotes the i-th unit vector.
Using a time-stepping procedure with incremental

formulation, Aw"* can be estimated with Eq.(21a) and

AW can be calculated from Eq.(21b) with linear
solution strategies.

Analogous to Eq.(20), equations of motion for the
rotation angles at the corners can also be derived and
therefore, the increments of rotation angles can be

obtained. The ideal elastic-plastic Mj — ; relation for
each plastic hinge is used to calculate the response
iteratively.

4.3 Approximate stochastic analysis

For simplicity, the stationary response of the frame
under wide-banded white noise excitation is analyzed

In Eq.(24), effective modal loading input is
introduced and the effective power spectral densities

are Y;So . Then

o= YjrSoL 12

! 4% @Pmj?2 @)

and the variance of the relative story elastic
displacement : Wy = wy ; Wy = wp —w; are

2 2
0%—;'21 ;i ﬁjio'jz s Bii =05 i 26)
J=
2 * *
where o =1+ 121 (A m;Bi/ Ly Bj) Ajhy;

Aji have been derived by Vanmarcke (1976).
For elastic frames, the rotation angles at the
corners and the lateral displacements are related by

0, _ Wi\ _ Q)| _[D
(o) -0 e G(2) . o
where [c] is a matrix determined by structural

parameters, therefore,

i

2 .

, 2 ’ ’
» »
where o= 1+ 1?1 (.S:Tml c“/_%m,cji) Aﬂl]*j .

In order to get Vj, a modal power relation is
considered

N : 2 s\ w_\
——-—mjz 7:?'2232 (1—%?:; 2veur{ae; bur{ae; >]r)'i(29)
J =

where T'j; are the mode participation factors that have
been derived by Irschik and Ziegler (1989).

With certain 8* values, it can be shown from the
elastic deformation that the equilibrium positions for

8 are §=[D] 9, where [D] is a matrix defined by

the structural parameters. Therefor [ and | are

-
RN TP 2ok (30)

where v;q have been derived by Vanmarcke (1976).

The mean yield increments are determined from
the energy relations during a yielding phase.
Assuming i~th story to yield alone,

Tu ~Tu = AW, - AU; (€2))
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where T2i =0, T = md} AU = Ujy - Uy, is

calculated from the deformation of the frame caused
by the inertia force and yielding moment at the i-th

story level, and AW = — 2M! *| A6 | _
Yielding in the positive and negative have also to

be considered separately and (A6 ), <Ae;'> depend
on their most recent o° values.

Finally, with certain 8* values, the conditional
statistics for W can be calculated iteratively.

6_:(0 is also reasonably modeled by a vector
Markov process with the FPK equation

2

)
= = - — [Ap] + L——[Byp] @322
ot 96; 2 06;06; ! G2

A E[AG: Ie‘(t)=e']
Ap=lim——— "
‘C—oO T
=7 (867 + 7 (a65) (32b)
E{Aei 6;16"(n)=0"

where

Bjj'-: Jim
T—

/ 2Tu?<AG?>2:uI<A9§'>2 ]

0 i#

5 CONCLUSIONS

The idea of updated internal loading is incorporated in
an efficient algorithm for statistical averaging of the
random response of SCWB frames. The plastic hinge
model is shown to be simple and reliable.

The probabilistic approximate theory of effective
loading is modified and extended to analyze both the
stationary and nonstationary random response of
framed structures with SCWB model under seismic
excitation. The validity of the approximation has been
verified by the statistical averaging. The advantage of
the approximation is the possibility of calculating the
inelastic responses based on the responses of the
associated linear background structures to make it be
more straightforward and suitable in engineering
application. The inelastic statistics obtained are also
of importance for further structural reliablity
analyses.
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