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On the importance of band limited excitation in direct integration analysis
of structures
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ABSTRACT: Seismic analysis of structures, done using direct integration of equations of motion, often
requires a time step which is much smaller than the sampling interval at which the accelerogram is available.
This necessitates the need for interpolating the digital accelerogram, which is conventionally done by linear
interpolation between samples. Linear interpolation modifies the frequency content of the data and inserts
spurious high frequency components, thereby changing the band limited nature of the original accelerogram
and increasing the high frequency components at the cost of reducing power in the low frequency range.
Such an accelerogram when used as base acceleration for analysis shows high frequency jitters. The
paper highlights the problems caused by linear interpolation. An interpolation scheme that maintains the
band limited property and, thus, avoids spurious high frequency components in the structural response is

proposed.

1 INTRODUCTION

Seismic analysis of structures is often done using
direct integration methods in time domain, wherin
the seismic input is provided in the form of an ac-
celeration time history. This input accelerogram is
a digital record of accelerations provided at a con-
stant sampling interval (say 0.02 sec) to the analyst.
Direct integration of equations of motion may re-
quire a time step which is much smaller than the
sampling interval at which the accelerogram has
been provided. This necessitates the need for inter-
polating the digital accelerogram, which is conven-
tionally done by linear interpolation between sam-
ples. However, as the original digital accelerogram
is essentially a band limited signal, linear interpo-
lation modifies the frequency content of the data
and inserts spurious high frequency components at
the cost of reducing power in the low frequency
range. High frequency insertion in input acceler-
ation history, excites high frequency modes of the
structure, thereby yielding a jittery response. This
paper highlights the inadequacy of linear interpola-
tion and suggests the use of an interpolation tech-
nique by virtue of which the band limited property
is maintained.

The interpolation is done by zero packing the
data to an extent required for aralysis. This zero

packed accelerogram is low-passed to recover the
base band signal of interest and eliminate the un-
wanted image of components generated by sampling
rate expander. Thus the proposed interpolation
technique maintains the band limited property in
the interpolated data. Simple structural systems
are analysed for illustrating the usefulness of the
scheme. These are analysed using both conven-
tional linear interpolation and with the aid of the
proposed band limited interpolation technique.

2 THE NEED TO INTERPOLATE

Seismic analyses using direct integration schemes
employ a ground acceleration history that is either
recorded or is synthetically generated. In either
case these are digital values at equally spaced dis-
crete time intervals. Since majority of the accelero-
graphs are analog in nature the history obtained
from them requires digitization. The instrument
and the digitization process introduces noise that
has to be removed by band pass filtering. The up-
per cut-off frequency of this band is generally 25 to
27 Hz. Moreover, most available corrected recorded
accelerograms are available at a sampling interval of
0.02 sec, which amounts to a Nyquist frequency of
25 Hz. In other words the highest frequency con-
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tent of the accelerogram also gets decided by the
sampling interval.

Synthetic accelerograms are often generated at
100 samples per sec, but are normally provided to
the analyst (generally the group deciding upon the
seismic loading history is different from the group
doing structural analysis) at a sampling interval of
0.02 sec. This again implies a Nyquist frequency
of 25 Hz. Perhaps the reason for this is that de-
sign engineers normally use acceleration response
spectra, in which 0.04 sec is the smallest period at
which the acceleration response spectrum value is
provided (UBC 1988).

Let us now briefly discuss the time step require-
ments for direct integration schemes. For condition-
ally stable schemes, stability considerations may re-
quire a time step At < Tpin/7, where Tpin is the
smallest natural period of the structure (Owen and
Hinton 1980). Unconditionally stable implicit schemes
on the other hand may require a small At from the
point of view of accuracy. It has been suggested
that results are accurate when the time step is lim-
ited as At/T < 0.01 (Bathe and Wilson 1978; Owen
and Hinton 1980), where T is the fundamental pe-
riod of the structure. For the Newmark method
(B = 0.25 and 4 = 0.5) it has been shown (Bathe
and Wilson 1978) that the period elongation for an
undamped single degree freedom system is less than
3% for At/T < 0.1 and the method does not decay
response amplitudes.

For nonlinear problems it becomes necessary to
iterate within a time step to obtain a converged so-
lution. It has been felt that it is better to reduce the
time step rather than pushing iteration of nonlinear
quantities within a time increment (Zienkiewicz et
al. 1984).

The point that emerges from the above discussion
is that the sampling interval at which the input ac-
celerogram is available, may, in fact, be too large
for direct integration. In such cases it has been
considered reasonable to assume that ground accel-

ration varies linearly in the time interval, while
acognising simultaneously that this may result in
-loss of accuracy (Zienkiewicz et al. 1984). Our
ontention is that linear interpolation introdudes a
iigh frequency content which is absent in the orig-
inal record provided.

3 INTERPOLATION SCHEMES

Let the earthquake accelerogram data, which is a
band limited sequence of samples be available at
interval T;. The fundamental frequency interval of
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this band is f, = 1/T}. Let for direct integration
it is required to interpolate the data to a smaller
sampling interval T; < Tj.

Let us now consider linear and band limited in-
terpolation schemes in some detail.

8.1 Linear interpolation

The impulse response function A(n) of a linear in-
terpolation filter can be written as

h(n) = { 0 ; otherwise

where R is a factor by which sampling rate has been
increased. This function has a triangular shape
and the frequency response can be obtained through
Fourier transformation as

__1_ sinﬁ'—zﬂ ?
R \ sin%

(1)

H(e)= (2
‘ne log magnitude of the frequency response for
= 10 is shown in Figure 1. It can be seen that
peak side lobe attenuates only to 26 dB relative
the pass band. Consequently unless the original
cord is highly band limited (i.e. to a band <«
'2RTy) it will fail to attenuate replicates of the
vectrum and thus introduce jitters in the solution.

3.2 Band limited interpolation

Let the original accelerogram sampled at T} be z(-)
and the interpolated accelerogram, interpolated by
a factor R, which shall be assumed to be an inte-
ger, be y(-). If () is the finite impulse response of
the filter required for interpolation then the inter-
polated signal

y(n) = E;,h((k +6.)T)z([n/R] - k) (3)

where

[n/R] =int(n/R) 1i.e. integer part of n/R
and

bh=n/R—-[n/R] ; 6.€/(0,1]

From equation 3, it is clear that evaluation of y(n)
requires filter h(-) sampled at fractional delays of
6,11 from the sample. This makes the band limited
interpolating filter a time varying system. How-
ever, the required time varying h(-) filter can be
realized by R time invariant filters that are subsets
of h(-). These time invariant filters operate at a
low sampling rate and are known as polyphase fil-
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Figure 1: Frequency response of band limited and linear interpolation (initial sampling interval =
0.02 sec, interpolated sampling interval = .002 sec)

ters (Bellenger 1976). Equation 3 shows that the
input sample is at time [n/R] — R and the output
at sample time n. The output can be written as

y(n) = 3_ pa(k)z([n/R] - k) (4)

k

where pn(k) = h((k + 6,)T1). Note pa(k) is periodic
in n with period R. The term [n/R] increases by one
for every R samples. The z(-) enters at low sample
rate f, and y(-) is evaluated at sample rate Rf,.
Equation 4 can be written in polyphase structure

y(nR+m) = gpm(k)z(n — k) (5)

where

pm(k) = h(kR+m) m=0,1,---,R~1

If the lowpass filter h(-) has N taps and N is divis-

ible by R, then each of the R polyphase subfilters

will be identical in structure with N/R taps. Bach

input z(-) will generate one output for each of the

polyphase subfilters as indicated by equation 5.
The interpolation is done by inserting R — 1 zeros
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in between two existing data points. This results in
the desired decrease of sampling interval. This re-
defining of sample rate introduces R replicates of
the spectrum in the band of frequencies defined at
this higher rate. However, the spectrum remains
periodic in 1/Ty. The resulting data is low passed
to eliminate the replicated copies. The task of this
lowpass filter is to reject the spectral copies that oc-
cur at integer multiples (< R) of the input sampling
frequency. Figure 1 compares frequency response
of band limited interpolation and linear interpola-
tion. The length N of the Finite Impulse Response
(FIR) lowpass filter can be chosen using the rela-
tion for transition band width of FIR antialiasing
(Elliot 1987) filter as

(6)

where A is the minimum stopband attenuation and
K(A) is an attenuation related scale factor. K(A)
is bounded by

ar=kk

"20;0:(‘4) < K(A) < —Zoizg(A) (7)



From experience of filter design, the new two sided
analysis band width is
afs

2f, = = (8)

where o is a factor for alias free band width. The
sampling rate, f, required to obtain an alias free
pass band down to a level 1/A satisfies the Nyquist
theorem given by

filR=2f+Af (9)
By using equations 6 and 8 into 9 gives

K(A)

N =Rz

(10)

Note that for every R samples of zero packed data
passed through the filter only one sample is nonzero.
This reduces computation to N/R multiplications
and additions per output data point.

Oetken et al. (1975) give design of an optimal
filter for interpolation.

4 ILLUSTRATIVE EXAMPLES

Let us now consider some examples to illustrate the
points that we have been making. Here we limit
ourself to elastic damped and undamped single de-
gree freedom (SDF)systems subjected to base exci-
tation in the form of an acceleration time history.
Direct integration is carried out using Newmark
method (Bathe and Wilson 1978) with constants
B =0.25 and v = 0.5.

4.1 Sinusotdal ezcitation

An undamped SDF system with natural frequency
of 34.8 Hz is subjected to a base acceleration of the
form

9(t) = aysin2w fit + a; sin 27 f5t + agsin 27 f5t

with
a; = 10.0
a; = 5.0
a3 = 3.0
fi = 23.19
fo = 13.43
fs = 5.49

The excitation is generated in a digital form at an
interval 0.02 sec. This is then interpolated using
linear and band limited interpolation with R = 10,

which gives a record at 0.002 sec. These ‘interpo-
lated accelerograms are used as base acceleration
(At/T ~ 1/14). Subsequent to direct integratiof
from which the absolute acceleration response of
the SDF system is obtained a Fourier analysis is
carried out. Figure 2 shows the variation of Fourier
amplitudes expressed in dB with frequency for the
two interpolation schemes. For such an excitation
it is also possible to find a closed form solution
which is also shown in Figure 2. Clearly the re-
sponse at excitation frequencies is accurately pre-
dicted by both interpolation schemes. However in
the high frequency range the response due to linear
interpolation is jittery showing a presence of high
frequencies that did not exist in the original signal.
At the structural frequency too linear interpolation
overestimates the response.

4.2 Parkfield earthquake

An actual corrected earthquake accelerogram ob-
tained from Parkfield earthquake of June 27, 1966
recorded in Chalome, Shandon (California Institute
of Technology record no. IIB034, component N85E)
was used as input excitation. The above record was
available at a sampling interval of 0.02 sec and was
interpolated by both the methods to obtain acceler-
ation values at 0.002 sec (R = 10). Figure 3 shows
the variation of Fourier amplitudes of the interpo-
lated accelerograms. It can be seen that the linearly
interpolated record contains considerable high fre-
quency components.

A SDF system with frequency 40 Hz and damp-
ing of 2% of critical was subjected {0 these “interpo-
lated earthquakes” (At/T = 1/12.5). Fourier spec-
tra of the absolute acceleration response is shown in
Figure 4. Once again it is seen that the linearly in-
terpolated record overestimates the response in the
high frequency range. Moreover, linear interpola-
tion yields a jittery and thereby unreliable response
as compared to band limited interpolation.

In order to test how the two interpolated ac-
celerograms would perform on a structure with a
small natural frequency these were used as input
motions on a soft structure (T=0.4 sec and damp-
ing 2% of critical). This however also implied us-
ing a time step much smaller than strictly required
(At/T =1/200). The result of the analysis is shown
in Figure 5, and it can be seen that the two inter-
polation techniques perform identically well in this
case. However, whether this is due to a low natu-

ral frequency or due to a very small At needs to be
examined.
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Figure 2: Fourier spectra of response of an undamped SDF system (natural frequency = 34.8 H z)
subjected to a sinusoidal input consisting of three frequencies
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Figure 3: Fourier spectra of interpolated Parkfield accelerogram using band limited and linear inter-

polation

3783



Fourier amplitude (dB)

Fourier amplitude (dB)

50-0E'WrTlll("iT[lllr'llll[ll’ll B RN R R RAR RS RARRN AR AR RRRE RS AR RARRE RALLE RARRS L ]
¥ _s

I . ]
300 | . 3
w Linear ]

,lr‘ll\{u\ ]

- . e Band limited 1

100 |- .
[ | ]

: 'l :
400 F .
F ]
300 F 3
F ]

C , _
_50-0 jlll[lllL[Llll[l[lilllllllllJlllllIlllllll[lllill[Jllllllll‘llllillll[lllllIJJIJIJLJ[l]lL,LlLlleJ,LllLill

24 30 36 42 48 54
Frequency (Hz)

Figure 4: Fourier spectra of response of a SDF system (natural frequency = 40 Hz, damping = 2%)
subjected to Parkfield earthquake
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Figure 5: Fourier spectra of response of a S DF system (natural frequency = 2.5 Hz, damping = 2%)
subjected to Parkfield earthquake
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