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ABSTRACT: A numerical tool commonly used in digital signal processing, the exponential window method, is
briefly reviewed in this paper an applied to the analysis of a cantilever shear beam subjected to a dynamic load at
the free end. This method allows carrying out analyses of undamped structures in the frequency domain, and
yields highly accurate results for both discrete and continuous systems.

1 INTRODUCTION

It is well known that conventional numerical methods

based on the fast Fourier transform (FFT) algorithm,

cannot be applied to the analysis of undamped systems
for dynamic loads because of the singularities at the
resonant frequencies of the system. While such
singularities do not exist in lightly damped systems, it
is still necessary to include a sufficient number of
points so as to resolve accurately the transfer functions
in the neighborhood of the natural frequencies. Also, it
is necessary to add at the end of the force time history a
quiet zone of trailing zeroes of sufficient duration to
damp out the free vibration terms. This duration is thus
a function of the fundamental period of the system and
the amount of damping, and can be very large for
lightly damped systems. For undamped systems, the
free vibration terms will never decay and, therefore, the
standard application of the FFT algorithm is no longer
possible.

Two novel approaches to eliminate this problem for
single degree of freedom systems have been suggested
by Meek and Veletsos (1972), and by Veletsos and
Kumar (1982). While these are interesting schemes,
their application is limited to one degree of freedom
systems, as they cannot be easily extended to multi-
degree of freedom systems, or to continuous systems,
which are of primary interest in practice.

A more powerful and general approach to obtain
solutions with the FFT method for undamped, or lightly
damped systems is provided by the exponential window
method described in this paper. Although this method
has been used in signal processing and in seismology,
its application in structural dynamics has been lacking.

The paper illustrates the application of the method to a
continuous cantilever shear beam, subjected at its free
end to a dynamic load of finite duration having a
triangular variation with time. It is shown that the
method can provide excellent results without the need
for any trailing zeroes, if the time step is small enough
and the number of points at which the transfer functions
are evaluated is sufficient to reproduce properly all
frequencies of interest. One cannot , however, use
interpolation schemes in the computation of the transfer
functions.

2 EXPONENTIAL WINDOW METHOD

The response of a lightly damped (or undamped) multi-
degree of freedom (or continuous) system follows
from the inverse Fourier transform
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in which H(w) is the transfer function at an arbitrary
elevation due to a unitary harmonic excitation, and
P(w) is the Fourier transform of the excitation p(f). A
formal analytical evaluation of this integral can be
accomplished by contour integration in the complex
frequency plane, with the choice of integration path
depending on the sign of t For positive times, the
exponential term is bounded in the upper half-plane,
while for negative times, it is bounded in the lower.
Since both the excitation and the vibrating system are
causal, it follows that the lower half-plane cannot
contain any poles. On the other hand, the value of the
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contour integral depends only on the poles encloseq .by
(or lying on) the integration path; hence, for positive
times the contour can be taken along a path that runs
parallel to the real axis at some arbitrary distance 7
below it, and is closed in the upper half-plane with a
circle of infinite radius. Invoking standard arguments of
contour integration, it can be shown that the integral
along the infinite circle vanishes. Hence, equation 1 is
equivalent to:

u(z)=_l._r H((D-iT})P(O)—in)e‘(n"i”)’dw
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Since n does not depend on @, it follows that the
response is given by

u(r) = " - _[" H(w~in)P(e-ine“dw
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with
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The transfer function H for complex frequency
z=w—inis just one of the components of the vector U

obtained from the solution of the well known
equilibrium equation in the frequency domain:
(K+izC-7M)U=Q .

&)
This equation differs from the classical equation in
structural dynamics only in that @ is replaced by z
This system will not exhibit singularities along the axis
of integration, even if C vanishes (i.e. for undamped
systems). Hence, to compute the response in the
frequency domain, it suffices to: a) compute the FFT
of the excitation, modified by a decaying exponential
window; b) evaluate the transfer functions for complex
frequency; c¢) compute the inverse FFT of the product;
and d) modify the result by a rising exponential
window.

While in theory any arbitrary factor n could be
used, in practice the choice of this number is limited by
the finite precision with which the computations are
made. Indeed, the value of the rising exponential term
at the end of the window is w=exp(n7T), where
T =NA:, with N being the number of points in the
FFT. 1If this value exceeds some four orders of
magnitude, numerical error develops, particularly for
large times. Numerical experiments indicate that good
results are obtained if w does not exceed a value of 107,

A simple rule of thumb is the choice n = 27Af =27x/T
(i.e. the imaginary component equals the frequency
step); this implies w = exp(2r)=535=10273,

EXAMPLE OF APPLICATION

While the method could be demonstrated by means of a
discrete systems with a finite number of degrees of
freedom, a more interesting application can be
accomplished with a continuous system, because such a
system has infinitely many resonant frequencies.
Consider a homogeneous cantilever shear beam of
length L having uniform cross-section A, shear modulus
G, mass density p, and subjected to a concentrated load
p(D=pAt) at the tip. From a solution of the differential
equation for this problem by the method of
characteristics, it is known that the response velocity
u(t,x) in the beam consist of a pulse with the same
shape as f(r) that travels along the beam with velocity

c=,/G/p. This pulse repeatedly reflects at the two
extrees of the shear beam, changing polarity every
time it impinges on the fixed end. On the other hand,
the solution to this problem in the frequency domain is
given by the equation

Psinox
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in which @ =a/c. The solution of this equation with
the exponential window method requires replacing @
by z=w-in; also, the transfer function for velocities
is obtained by multiplying the equation by iz.

Consider a beam with unit properties (length,
modulus, mass, etc.), which has resonant periods of
Tj=4's, T,=4/3 s, T;=4/5 s, etc. The beam is subjected
to a load with time variation f{r) given by a triangular
pulse and having a duration ¢,=0.10 s, Choosing N=512
points for the FFT and a time increment of 0.01 s, it
follows that the length of the Fourier window is 7=5.12
s , which is only slightly larger than the fundamental
period. Thus, the load is sampled at 11 points, the
Nyquist frequency is 50 Hz, and the sampling rate in
the frequency domain is 0.1953 Hz. Application of the
method using w=exp(n T)=1,000., that is n=1.349 (i.e.
0.2147 Hz) yields the results shown in figures 1
through 4. The first two figures depict the velocity and
displacement at the top of the beam, while the other
two show the response at the center of the beam. The
computed results are excellent, to the point that they
cannot be distinguished from the exact analytical
solution. Rather remarkable is the faithful reproduction
of the sharp temporal discontinuities, and in the case of
the displacement time histories, the large differences
between initial and final values (it should be
remembered that in a conventional implementation of
the FFT method, the response is periodic, so that initial
and final values agree). This shows also that trailing
zeroes are not necessary in this method, as confirmed
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by the authors by means of separate analyses not shown
here.

CONCLUSIONS

On the basis of the results presented, and additional
computations for discrete and continuous systems
carried out by the authors, it was verified that the
exponential window method described herein provides
accurate results when applied to the analysis of
dynamic systems in the frequency domain. The
imaginary component of frequency should be chosen in
such way that excessively small /large values at the end
of the exponential windows are avoided. A simple
choice is an imaginary component of frequency equal
to the sampling rate in the frequency domain. Because
the method is very sensitive to inaccuracies in the
computation of the transfer functions, it follows that
interpolation schemes cannot be used in the evaluation
of these functions. However, this shortcoming is
compensated by the fact that no trailing zéroes are
needed, so that the number of points in the FFT can be
kept to a minimum.
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