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Optimal nonlinear analysis by bayesian methods

M.Ritto-Corréa & R.T. Duarte
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ABSTRACT: The paper presents a Bayesian method for i) the evaluation of the knowledge about the failure
probability of a structure resulting from nonlinear computations and for ii) the selection of the earthquake
intensities to be used as input in those computations; the probability dostributions of the eart.hquake inten-
sity and of the available ductility in the structure are assumed known. The failure proba.b111ty is determined
by an input-space formulation where the probability distributions of the available ductility in the different
structural variables are projected on the space of the variables that describe the earthquake action through
the vulnerability function. The Bayesian method presented operates on the probability distributions that
represent the state of knowledge about the vulnerability function. The earthquake intensity to be used
in the nonlinear computations is selected through a preposterior analysis i.e. the probable results of the
analysis are evaluated and the one corresponding to the greater improvement in knowledge is selected.

1 INTRODUCTION

The development of Earthquake Engineering in
the last years have shown so large a multiplicity of
new models and numerical techniques that it seems
now more worthwhile to try to organize the exist-
ing ones than to develope new ones. In this pa-
per a first step in this direction is presented un-
der the form of a Bayesian method to orientate the
application and to interpret the results of nonlin-
ear analysis. In effect, the availability of sophis-
ticated models for the dynamic analysis of struc-
tures in the nonlinear range needs a reassessment
of the use of analytical methods in earthquake en-
gineering. A sophisticated model can give very de-
tailed information about structural behaviour while
a coarser model can give information which may
suffice in given circunstances or, more precisely, the
coarse model furnishes a restricted description of
the results obtained from the sophisticated model
(Muncaster, 1983; Segev, 1990). From a pragmatic
perspective the differentiation between coarse and
sophisticated models results from the large differ-
ence in the amount and quality of data needed in
their quantification and in the even larger difference
in the amount of the results of the analyses. While
the quantification of parameters in coarse models is
generally straigthforward, the quantification of at
least some parameters in sophisticated models may
be very difficult without specific experimental stud-
ies (e.g. the quantification of the parameters con-
trolling the strength degradation); in consequence,
a designer may feel justifiably confident in attribut-
ing values to the parameters of coarse models but
should feel much more keenly the uncertainties and

deficiencies in information when selecting the values
of the parameters in a sophisticated model. On the
other hand, the output of a coarse model may be
easily interpreted in terms of design operations (e.g.
the results of a response spectrum analysis may be
’processed’ as the results of an analysis for static
loads) while the information contained in the out-
put of a sophisticated model {e.g. the time-histories
of the structural response for several realizations of
the earthquake action) will surely be much more
difficult to integrate into the design procedure in a
clear and complete manner. In consequence, the
passage from coarse to sophisticated models will
give a greater emphasys to the informational as-
pects of earthquake engineering.

The informational aspects of engineering com-
prise the construction of methodologies and the
processing of information. The construction of
methodologies involve the identification of vari-
ables, the evaluation of models, the selection of
representative values for the variables and the def-
inition of ’strategies’ (Duarte and Campos-Costa,
1988) that determine the decisions to be made in
consequence of the result of the analyses. The pro-
cessing of information comprehends the different
techniques that can be utilized and the calibra-
tion of the ’strategies’ (Duarte and Campos-Costa,
1989). The object of the informational viewpoint is
to establish the relationships between the different
models rather than to value each one, which can-
not be done without considering some instance of
application. The present paper briefly presents the
approach that is being developed in the National
Laboratory for Civil Engineering, Lisbon, to those
informational aspects of structural and earthquake
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engineering (Duarte, 1991).

The developments of the informational aspects
are also becoming more important due to the evolu-
tion of earthquake resistance codes from documents
where the consensual knowledge of engineers and
scientists is compiled to documents where some ob-
jectives are identified and the means to attain those
objectives are formulated in a logical way. This ra-
tional structure of the recent earthquake resistance
codes is clearly in evidence in Eurocode 8.

However, the informational aspects of earthquake
engineering may only be fully developed if the
earthquake engineering itself is "formalized” in a
rational and coherent structure, where the infor-
mational content of each part can be effectively de-
fined. A possible "formalization” was attempted by
Duarte, 1990. The relevant parts of this formaliza-
tion are here included for easiness and completeness
of reading.

2 DESCRIPTIVE FUNCTIONALS

The earthquake action will be considered to have
several components and a finite duration 77; hence,
every possible earthquake action will be assumed
to belong to the space A, of vector valued func-
tions Lebesgue integrable in absolute value (Lvy).
Conversely, every function belonging to A, will be
considered to be a generalized earthquake action.

The response of the structure is assumed to be
described by a finite number r of variables (dis-
placements, accelerations, internal forces ...); the
time histories of the responses to all generalized ac-
tions constitute a ’space’ R,; the duration of inter-
est T of the response time histories will be assumed
to be greater than Tj.

The relationship between an element a(t) of 4,
and the corresponding element r(t) of R, defines
the structure operator €&:

r(ty) = €(a(t1))

The operator £ is assumed to be sufficiently con-
tinuousi.e. for two action histories a;(t;) and a,(t,)
sufficiently close to one another, the corresponding
response histories will also be close to one another.
The equation (1), which is an equation of motion,
must be understood in the sense that it establishes a
correspondence between the complete time history
of the action a(t;) and the complete time history of
the response r(t;).

The description of the response of the structure
by an equation of motion may be too detailed for
engineering purposes. A possibility to concentrate
on the essentials of the response and of the action
is to define a small number of ”descriptive func-
tionals”. If a large enough number of descriptive
functionals is defined a perfect description of ac-
tion and response may be obtained but no signi-
ficative simplification is gained. On the other hand

t1€[0,Ty] t;€(0,Ty (1)
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the identification of the best descriptive functionals
is an open problem although the definition of their
descriptive power (Duarte, 1990) furnishes a first
step. In consequence, in this paper it is assumed,
when that is necessary, that the peak values of ac-
tion and response have adequate descriptive power
and they will be represented by the supremum norm
||°; for generality, the descriptive functionals for
the actions will be noted by h and the descriptive
functionals for responses by ¢ and will be called re-
spectively the intensity measures and control vari-
ables;

3 THE VULNERABILITY FUNCTION

The vulnerability function represents structural be-
haviour, not as a mapping of the time histories of
the earthquake input into the time histories of the
structural response, but as a much simpler relation
between the intensity measures h and the control
variables ¢. From the equation of motion it is pos-
sible to write:

¢ =c¢(¢(a(tr))) (2)

In this new and simplified form, the equation of
motion represents a mapping from the space of the
actions into the Euclidean vector space C of the
control variables. The last step needed for the vul-
nerability function to appear is to substitute a(t)
by h. This substitution poses somes problems. In
effect, it is possible to use the inverse image ¥(h)
of h defined by,

F(h) = {x(t) :h(x) =h,x € 4,} 3)

In general, #(h) will be constituted by a large
number of time histories x(t); for instance if the
descriptive functional is the peak value of acceler-
ation, F(h) will be all acceleration time histories
with peak value h. Thus if the vulnerability func-
tion V(h) is defined as V(h) = ¢ (¢ (¥ (h))) for
a given vector h a large number of possible values
for the control variables would result. The effective
way to side-step this indetermination is to define as
the value of the vulnerability function a weighted
average of all the possible ¢ values. This can be
done in a relatively straightforward manner when
the earthquake action is idealized as a stochastic
process (Duarte, 1990). A stochastic process is
an ensemble of functions where a probability mea-
sure u, is defined. The advantage of introducing
stochastic processes is that the expected values of
the descriptive functionals can be considered to rep-
resent the whole space of actions or structural re-
sponses. Let u,(1),¢ € I be a family of probability
measures such that E(h, u.(?)) # E(h,pa(s)) for
i # j, where E(x,x) means expected value in terms
of the indicated probability measure.

Let the mapping 7 be the inverse of the map-



ping h = [, h (a(t;))du.(i). Then the vulnerabil-
ity function is defined as

¢ =V(h) = [,c(E(a(t1))) dua(F (h)) (4)

For the present purposes, a stochastic process is
a weighted ensemble of functions of the time. In
mathematical terms and considering a L, space as
the ensemble of functions, the definition of a mea-
sure in L, needs the definition of a o-field S of sub-
sets of L,; this o-field is the o-field generated by
the cylinder subsets of L, i.e. subsets comprising
all functions x(t) for which x(t;) € X, x(t;) €
Xz,.... x(tN) € XN, where tl,tg,.-.tN € O,Tl)
and (X,;,Xz,...Xy) are Borel sets in R*Y. Now
a stochastic process is defined as a triplet (L,, S, u)
with #(L,) = 1; p is a measure defined on the o-
field S. The specification of the measure & defines
the process; in general, a large number of functions
may have a zero probability density of occurrence
for a given process; however for Gaussian processes
all functions x(¢) € L, have nonzero probability
density (Ibrahimov and Rozanov, 1974). A func-
tion with a nonzero probability density is called a
realization of the process.

The measure defined in a L, space may be used
for the definition of functionals which will be des-
criptive of the complete space and not of a sin-
gle realization. For instance it is now possible to
define the mean peak value of a function x(t) as
mpu(x) = [y, || x(¢) ||® di ie. the mean peak
value is the ensemble average of the greatest max-
imum (in absolute value) of each function in the
ensemble. In a similar way the mean value of any
functional g(x(t)) is E(g(x(t))) = f,9(x(t))dy.
The stochastic analysis of a structure signifies the
characterization, in terms of probability concepts,
of its response from the knowledge of the probabil-
ity measure defined on the vibration space 4,. In a
general way, a stochastic model of the vibrations is
atriplet (A,, S, a) Where A, is the vibration space,
S, is a o-field defined on A and u, is its probability
measure; the corresponding stochastic model of the
responses is a triplet (R,,S,, u,) where R, is the
response space R, = £(4,), S, is the o-field gen-
erated by the £-images of the subsets in S,, and
4y is the measure induced in R, by £ i.e. to each
measurable set in R, is attributed the measure of
its inverse £-image in A,.

In general it is only needed or useful to know
some functionals of the responses, as for instance
the mean peak value:

mpv(r) = [, |} r(ta) [ dpr =

Ja 1 €(a(t)) [I* dpea (5)

I

This expression emphasizes that the responses
may be characterized by performing the ensemble
averaging with the probability measure defined on
the vibration space.
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It is now possible to define rigorously and in gen-
eral terms a vulnerability function. Taking the ex-
pected value of equation (2):

Ble) = fp.edu = [4,c(é(a(t1)))dra = E(c, 1) (6)

The expected value of a descriptive functional
h(a(t)) of the actions is

E(h) = [4h(a(t1))dus = E(h, a) (7)

Both expected values depend on the measure pg;
consequently the notation E(c,u,) and E(h, u,) is
used. Let p,, ¢ € I be a family of probability
measures, with I being a suitable index set; this
family is constructed in a such way that

E(h,ua) # E(hjue) 1#7 (8)
Hence the mapping
E(h) = E(h, pa) = [4,h(a(ts))dpa: (9)

is a one-to-one mapping between i and E(h) with
domain I and range X defined by

H={x:x= [gh(at;))du,i€ I} (10)

The family of probability measures is supposed to
be sufficiently diversified so that ¥ is large enough
for the applications; in general, the family of proba-
bility measures will depend continuously on a given
number k of independent parameters and thus I =
R* and in consequence ¥ will be homeomorphic to
RE: let 7 be the inverse mapping of the mapping de-
fined by expression (9) i.e. i = F(E(h, #4:)). Then
the vulnerability function is defined by the compo-
sition of the mapping 7 and the mapping defined
by equation (6):

c=E(c,us) i=FMh) heX (11)

where ¢ and h are vectors of numerical values (and
not values of the descriptive functionals); empha-
sizing the dependence of the probability measure
on the index 7 by the notation u,(z) = K4, the vul-
nerability function is written as:

¢ =V(h) = E(c, ua(¥ (h))) (12)

Probabilities used in this section are completely
artificial in the sense that they do not pretend to
represent any ‘random’ physical process. On the
other hand they are the basis for the evaluation
process of the state of knowledge described below,
and they may be considered to be 'constructed’ for
that purpose.



4 PROBABILITY OF FAILURE AND LIMIT
STATES

4.1 Hazard probability

Let u* be the probability measure defined in ¥
by the hazard corresponding to the seismicity of the
site. This probability defines two probability distri-
butions of interest, one on the time histories of the
response and other on the values of the control vari-
ables. The probability distribution of the time his-
tories of the response is defined by the composition
of the mapping defined by the structure operator
¢ (equation(1)) with the inverse of the mapping
between a(t) and h; this last mapping is a proba-
bilistic mapping, since to every value of h € X it
associates a probability measure u4(i) in A,, with
i = F(h)(expression (11)). Let S, be the o-field
generated in R, by the £-images of the Borel sets
in A, and g, (¢) be the measure induced in R, by
ta(z); then for every set X € S, is associated a
probability:

P(X) = [y [x du,(F(h))dun = [x dus (13)

where yuj, is the probability measure defined in the
space of the actions by the hazard model and ug
is the probability measure in the space of time
histories defined by the seismicity model and the
stochastic model of the actions.

In consequence the consideration of the earth-
quake hazard mathematically translates only as a
reorganization of the probability distribution in A,.

4.2 Probability of failure

The probabilistic idealization of structural fail-
ure may be carried out in two ways. In the more
rigorous approach, the structural behaviour is de-
pendent on the actual values of the limit states;
hence the vulnerability function is dependent on the
probabilistic definition of the limit states and either
elementary or averaged vulnerability functions may
be considered; an elementary vulnerability function
is the vulnerability function for a given realization
of the limit states; the averaged vulnerability func-
tion is the probability-weighted average of the ele-
mentary vulnerability functions for all limit states
realizations. In the simplified approach limit states
and structural behaviour are mutually independent
i.e. the vulnerability function is not dependent on
the limit states values, and the limit states may
be defined without reference to the vulnerability
function; only this approach will be considered in
the present paper and only with deterministic limit
states.

It is assumed that the structure may have in-
dependent collapse mechanisms (Campos-Costa,
1990); each collapse mechanism is characterized by

a distribution of plastic hinges; when each plastic
hinge belongs to just one collapse mechanism, the
collapse mechanisms are independent. Failure oc-
curs when the ductility demand in all plastic hinges
of a collapse mechanism is greater than their ductile
capacity. Let Fi;(¢) be the cumulative distribution
of the ductile capacity of the j-th hinge on the i-th
mechanism; assume the earthquake hazard is repre-
sented by the probability density p(@) of the mean
peak value of the acceleration; then the cumulative
distribution of failure F(@) in terms of the mean
peak acceleration is

F(@) = 1- (1 - T;F; (Viy())) (14)

where V;;(@) is the vulnerability function for hinge
7 in mechanism 7. The probability of failure is given
by p = [p(a)F(@)da. Assuming that actions
(p(a)) and resistances (Fj;(w)) are known, only
the vulnerability functions must be determined, by
analysis or testing, in order that the probability of
failure may be computed.

5 THE BAYESIAN METHOD
5.1 Probabilistic Representation of Knowledge

Assuming that the probability distributions of
the earthquake vibrations and resistances are
known, the evaluation of the probability of failure is
dependent on the knowledge about the vulnerabil-
ity function. The Bayesian method here presented
has the purpose of estimating this function by a
process which is optimal in regard to errors in the
probability of failure. The estimation of the vulner-
ability function involves a probabilistic representa-
tion whose mean value will converge to the true
value of the vulnerability function and whose vari-
ability will tend to zero as the analysis advances.

Presuming total absence of information about
structural behaviour, the vulnerability function
may be any nondecreasing function, since it is rea-
sonable to expect that an increase of the load would
not correspond to a decrease of the load effect.
Hence a complete ensemble of nondecreasing func-
tions is a first step to the representation of our
knowledge (or its absence) about structural be-
haviour. Completness means that given the vul-
nerability function of any structure, there should
be in the ensemble a function which is equal (under
an appropriate norm) to that vulnerability func-
tion. From a practical viewpoint, it is not nec-
essary, nor makes sense, to find the value of the
probability of failure with great accuracy. Thus, it
is not needed to identify the vulnerability function
with much sharpness. Hence, completeness may be
understood to be attained if in the ensemble there
is always a function which is sufficiently close to
any possible vulnerability function. Under this ap-
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proximation and assuming that the domain and the
range of the vulnerability functions are finite (since
they represent the values of physical quantities) it
follows that the number of ensemble functions that
must be considered is finite. This fact suggests that
a not very large number of ensemble functions V;
may be used (i<1000) if during the analysis it is
investigated if this number should be increased.

This investigation is carried out by verifying how
many ensemble finctions are near the average vul-
nerability function; if this number is small (< 10)
more ensemble functions should be generated.

The robustness of the final estimates depends on
the qualities of the functions in the ensemble. To
control the robustness two partial ensembles are
used. The first one is composed of analytical func-
tions of the form

¢ = ah+ Bh? + yA® (15)

appropriate values of &, and + being chosen to
generate the selected number of functions. The sec-
ond partial ensemble is constituted by realizations
of discrete Markov processes where the value ¢; of
the control variable, corresponding to a value h; of
the load intensity, suitably discretized is given by

ci= (14 6x)eioy (16)

where § is a constant and z is a random variable
with an uniforme distribution in the interval (0,1).
This discrete function is transformed into a con-
tinuous function by a linear interpolation rule ap-
plied on a bilogarithmic plot. The values of § are
chosen to generate a partial ensemble with the de-
sired characteristics. Results obtained by consider-
ing separately the partial ensembles allow to eval-
uate the robustness.

The ensemble of functions is probabilized by as-
sociating to each function V; a probability value p;.
Each set of values p = {p1,p;...}7 represents a state
of knowledge. There is a a good state of knowledge
when all the ensemble functions are associated to
very small probability values with the exception of
those which are close to the true vulnerability func-
tion, which have much larger probability values.

Before any nonlinear analysis is performed there
is no knowledge, i.e. the state of knowledge is non-
informative. Absence of information must neces-
sarily be understood in relation to some quantity,
which in this case is considered to be the proba-
bility of failure. A non-informative state of knowl-
edge is represented by a constant probability den-
sity in a logarithmic scale (Berger, 1985). This
means c¢.g. that the probability of the probability
of failure lying in the interval (107%,107%) is equal
to the probability of it being comprised in the in-
terval (1074,107%). It should be noted that the to-
tal probability is theoretically infinite, as frequently
happens with non-informative distributions. Prob-
ability values p; may be easily computed to secure
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approximately a non-informative distribution. The
uncertainty associated to a state of knowledge may
be quantified by the difference between the 5% and
95% fractiles of the probability distribution of the
probability of failure.

5.2 Bayesian Analysis

The value of the vulnerability function is the mean
value of the control variable. When a nonlinear
computation is performed, necessarily using a re-
alization of the stochastic process representing the
earthquake action, the control variable value ob-
tained is only an estimate of the true value of the
vulnerability function. However, several realiza-
tions may be used and, as a result, a sample of
control variables values are obtained. The sample
mean value is obviously a better estimate than any
individual value. If the number of sample elements
is not small, the probability distribution of the sam-
ple mean value is approximately a Gaussian distri-
bution (by the central limit theorem) with a mean
value equal to the mean value of the response to
one realization and with a variance equal to the
variance of the response to one realization divided
by the number n of sample elements.

In the case of structural response to earthquakes
it may be assumed that variance values correspond
to a coefficient of variation with a value of 0.3.

This permits the definition of the conditional
probability P(r | Vi(k)) of obtaining average re-
sponse r for earthquake intensity & if V() is the
true probability function by

P(r | Vi(h)) = G(Vi(h),0.00V;(h)?/n) (17)

where G(u,0?) represents a Gaussian distribution
with mean value p and variance o?. Hence, after
performing n computations and obtaining an aver-
age value r the a posterior: probabilities P(V; | r)
may be computed by Bayes theorem:

P(Vi(h) | ) = piP(r | Vi(R))/ ZipiP(r | Vi(R)) (18)

These probabilities represent the new state of
knowledge. If the variability of the conditional
probability (P(r | Vi(k)) is underestimated (due to
either an underestimation of the value of the coef-
ficient of variation or to the true distribution being
not sufficiently close to a Gaussian distribution) the
Bayesian analysis may present instabilities; should
they be detected, a value higher than 0.3 for the
coefficient of variation should be used. If the vari-
ability of P(r | Vi(h)) is overestimated the conver-
gence is more slower than it could be but no other
undesirable effects result.



5.3 Optimal earthquake intensities for nonlinear
computations

The value h of the intensity of the earthquake vibra-
tion to be used in the nonlinear computations may
be selected to provide an optimal increase in knowl-
edge through a preposterior analysis. The idea be-
hind this analysis is to evaluate for a large number
of values of h what change in knowledge may be
expected if the computations are performed. This
evaluation is carried out by considering the prob-
ability distribution of obtaining a value r of the
response, as may be computed from the probabili-
ties associated with the ensemble functions, for each
intensity (Duarte, Ritto-Corréa, Vaz and Campos-
Costa, 1990). It is not necessary to evaluate very
rigorously this probability distribution and experi-
ence has shown that if a discrete probability distri-
bution of 0.1 probability values coincident with the
5%, 15%... 95% fractiles of the true distribution is
adopted, satisfactory results are obtained. Then,
the probability of the increase in knowledge assum-
ing that probability distribution is computed and
the intensity corresponding to the larger expected
increase in knowledge is selected.

6 FINAL REMARKS

The Bayesian method presented in this paper has
been proved very useful in the earthquake analysis
of structures in the nonlinear range, namely of re-
inforced concrete bridges whose nonlinear charac-
teristics are idealized by filament models (Duarte,
Vaz and Ritto-Corréa, 1990 and 1991; Vaz, 1991).
It seems also worthwhile to indicate the main di-
rections the present authors intend to develop this
line of research.

One advacement is the Bayesian evaluation of the
conditional probabilities (expression (17)). This
evaluation could only take in account, in a first
phase, the uncertainties about the coefficient of
variation, even if its estimates are not robust. In
a second phase more approximate conditional dis-
tribution could be postulated, as function of the
number of sample elements. The purpose of this
advancement is the optimization of the number of
sample elements i.e. the number of nonlinear com-
pitations that must be performed.

Another advancement is a more significative
quantification of the state of knowledge. It is pos-
sibly more important to know accurately the up-
per bound of the range of the probability of failure
than the 90% confidence interval. The only reason
this was not already done is because of the difficult
semantics involved: in effect, the result would be
a probability distribution of a lower fractile of the
probability distribution of the probability of failure.

It is also the author’s opinion that the application
of this Bayesian method to definition of the optimal
testing conditions of expensive models (e.g. the se-
lection of the best earthquake for a shaking table
test) could be very fruitful. This application would
naturally involve extensive numerical simulation.
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