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Development of SLP for identification of structural systems
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ABSTR@CT:.The purpose of this study is to present a new nonlinear optimization scheme, which is
modification of Successive Linear Programming(SLP), for identification of a linear chain oscil-

lator.

The identification problem is formulated in the frequency domain

in order to estimate

the st?ffness and damping coefficients of the system with known mass distribution. In numerical
ana}ySlS. the results of identification of 5-DOF system by SLP and modified SLP are compared
It is shown that the convergency of parameters is dramatically improved by applying the modi-

fied SLP.

1 INTRODUCTION

The development of dynamic models is necessary
for predicting the response of structural
systems during earthquake motions. In aseismic
design of structures, dynamic models can be
theoretically synthesized from the properties
of structural components and their inter-
actions. Such dynamic models should be
improved, because there still remain many
uncertainties in the synthesis. Fortunately,
a large number of records pertinent to struc-
tural response during earthquake motions have
been accumulated, which offers an opportunity

to study dynamic characteristics of structures.

Using these records, dynamic properties of
structures can be identified and then struc-
tural dynamic models are improved.
Identification problem has been studied by
many researchers, and various approaches are
proposed. Many of the identification tech-
niques that have been employed in earthquake
engineering can be classified as output-error
approach. In this approach, the optimal es-
timates of parameter values of a dynamic model
are determined by achieving the least-squares
match between the responses of structure and
model subjected to nominally the same excita-
tion. Then, the identification problem can be
formulated as a optimization problem of struc-
tural parameters. In order to solve such
optimization problem,
Nonlinear optimization schemes can be clas-
sified into direct search method and descent
method. The latter is the method that uses
the partial derivatives of objective function
and is often employed in identification of
structural systems. McVerry(1980) applied
Gauss-Newton method to identify modal parame-
ters of a linear shear structure excited by
eathquake ground motion in frequency domain

we can use many schemes.

analysis. Matsui and Kurita(1989) also applied
Gauss-Newton method to identify a structural
system in time domain analysis. Tsujihara,
Sawada and Hirao(1987) applied SLP(Successive
Linear Programming) to identify stiffness and
damping coefficients of a linear chain oscil-
lator. Tsujihara, Sawada and Sugito(1990)
applied SLP and DFP(Davidon-Fletcher~Powell)
method to identify S-wave velocity and quality
factor in the subsurface layered soil using
vertical array records of earthquake ground
motion.

Among thése optimization schemes, SLP has
the advantage whose algorithm is relatively
simple. Particularly, in such optimization
problem with no constraint equations as iden-
tification of dynamic structural systems,
approximation in each stage can be carried out
without using the scheme of LP(Linear Program-
ming). Then, we need only the information
about the sign of the first-order partial
derivative with respect to each parameter
Moreover, SLP is very effective to identify
simultaneously such parameters as stiffness
and damping of a structural system whose size
and sensitivity are considerably different
from each other, because the linear-search
subproblem does not exist in the algorithm.
However, SLP has the serious defect that the
convergency is not good in the neighborhood of
a optimum point.

In this paper, we introduce a new optimiza-
tion scheme based on SLP. The second-order
partial derivatives are used to overcome the
defect in the convergency near a optimum point.
First, we show the algorithm for identifica-
tion of a linear chain oscillator. Secondly
we show through numerical analysis that the
convergency is dramatically improved by
applying this schenme.
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9 FORMULATION OF IDENTIFICATION PROBLEM

Fig. 1| shows a linear chain oscillat9r with
n-degree-of-freedom, in which mass is repre-
sented by m,, stiffness by ki, damping by ¢,
Denoting the absolute motion of

j=1,2, -+, 0.
masses by vector x(t) (={xi(t), xa(t), -,
%2 (t)1T), the equation of motion can be
expressed by
MX (t)+Cx (t) +Kx (t)=f(t) (1)
where
.
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crXo(t)+kixo(t)
0
f(t)= : (5)

0
xo(t) is the displacement of the base. Taking

Fourier transform of both sides of Eq. (1), we
have

fweitk:
0

[-w *Mtiw C+K1X(w )= Xo(w) (6)

.

0

where w is circular frequency; X(w) and
Xo(w) are the Fourier transforms of x(t) and

xo(t), respectively. £Eq.(6) can be solved as
follows,

Xow)=A(w) '"Flw)X(w) (1
wvhere

Alw)=[-w *M+iw C+K] (8)

Flw)={iwecitk:, 0, -+, 0}7 (9)
Consider that the records of motion are
available at the base and an arbitrary mass r.
Denote a measured record by~, and Fourier
transforms of those records Xo(t) and X.(t) by
Xo(w) and X,(w), respectively. The transfer

:;I F‘EE}:TJ X,
" [iiﬁi:}::'J '
=Tl

Figure 1 System model
function between the base and mass r is
expressed by
Hlw)=X,(0)/Xo(w) (10)
While, the transfer function of the model,
H(w:;a), is calcurated from Eq. (7) as a func-
tion of system parameters a (m,, k, and c,
j=1,2,+-+.,n). Therefore, the identification
problem becomes to determine the optimal esti-
mates of the parameters, so as to minimize the
least-squares match between H(w ) and H(w:a).
We adopt the following objective function;

N1
S(a)=3 [ [Hwa)l - [ Hw)l]?

t=t —mnin
(11)
wvhere w . denotes i-th sampled circular
frequency and Nf the total number of samplings.
Eq. (11) can be solved in an iterative manner
with an optimazation scheme.

Only the amplitude of the transfer function
is used in Eq. (l1). The analysis in the
frequency domain, in general, corresponds to
that in the time domain by considering the
amplitude and phase. For a linear chain model,
however, the information of the system dyna-
mics can be extracted from only the amplitude
of the transfer function because the unit
impulse response function of the system has
causality and its Laplace transform is minimum
phase function(Papoulis, 1962). Therefore, the
system under consideration is identifiable
through the objective function as shown in
Eq. (11).

3 ALGORITUM OF MSLP(MODIFIED SLP)

The optimum values of a are to be found by
means of iterative procedure. At the start of
r-th iteration, we possess current values

@ ‘7, and we seek new values a "'’ using
the formula
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a (:+l)=a (”""Aa r)

(12)

) are the step size in the r-th

wvhere A a
iteration.
Taking Taylor series expansion of Eq. (11) in
the r-th iteration of optimization procedure

we have

noo8se
+ L
i=1 aaj

S‘””z

S(f) Aa,“’

X azs(r)
I ___Aaj(r)aaktr)
'“'laa,ﬁa,

Wi

1
b o—
2 J
(13)
where S$"*" and S are S(a ') and
S(a “’), respectively, and N is the total
number of unknown parameters. Partial deriva-
tives of the first and second order of objec-

tive fuction are expressed by

as N1 - dH(w . ;a)
= 2 [Hwa) - Hw )] —
4 a, t=1 da,
(14)
a°3s Nt Ol (w.:a) H{w;a)
= 2%
da,;d a, =1 da, J a.

z

' - dM(w ;s a)
+ 22 [Hwoia) - (o)) —————

0 a,;0 ay

(195)
SLP requires only the second
to find A a '’ under the
limit.

Traditional
tern in Eq. (13)
following constraints of move
g Ea, " (j=1~N

(16)
where £ is coefficient that determine the
move limit of Aa, ‘", and 0.02~0.2 is often
set as £. £ 1is to be set smaller in the
neighborhood of a optimum point.

In the scheme which we call MSLP(modified
SLP), by taking it
(13) is a equation of the second degree with
respect to Aa ‘>, we try to minimize Eq. (13)
by SLP. The problem is that the second-order
partial derivatives of transfer function are
contained as shown in Eq. (15). In the system
under consideration, however, they are easily
obtained because the second-order partial
derivatives of A{w) and F(w) in Eq.(8) and
(9) are null matrix and null vector, respec~
tively(see APPENDIX).

The algorithm of MSLP is as follows. We
rewrite Eq. (13) for the sake of simplicity of
explanation.

'Ea](nééal

N 1 N N
T= L D,B8, + — L LEwB B« (17)
=1 g dmy kel

where D,=(8S8/8 a,) ' E,w=(d°8/8 a,3d a)
Y B ,=Aa, and Bu=A ax. We omit the
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into consideration that Eq.

first term S in Eq.(13) because minimiza-
tion is carried out regardless of the value of
S . D, and E,;« in Eq.{17) need to be calcu-
rated once in the r-th global iteration.
Linearizing Eq. (17) with respect to 8 by
Taylor series expansion,

N
T“):T“)‘*‘ T (é’T/é’,B,) (”ABJ‘” (18)
I=1
vhere

N
aT/a/91=D]+EEJIBI(l) (19)

M-l
Then, A B, ¢, js1~N, can be determined by
using the scheme of LP under the following
constraints of move limit.
EBLWEAB VS B (j=1~N) (20)
is coefficient to

D We may
(t)

where B ,.=f a ;' and ¢
determine the move limit of A B,
set 0 to the initial approximation 8,
j=1~N.

By the way, by taking it into account that
the constraint equation is nothing but Eq. (20)
we can determine A B, ‘"’ only from the infor-
mation about the sign of 8 T/8 B, as follows.

then AB, V== 8.

. (21)
then A B, “”( B

(22)

Thus, local iteration to minimize Eq. (17) can
be carried out without ‘using the scheme of LP
After such local iterations, the optimal
estimate 8 ;% of Aa, ‘" is obtained. Then,
the new approximation a , “"*'’ in the global
iteration is determined by

it (81/88,) =20

it (81/88,) <0

a, TV ea gt (i=1~N)  (23)

¥e adopt the total number of iteration such
that 20 as the terminating criterion of local
iteration, and Eq. (24) as the terminating
criterion of global iteration.
Ss ¢ (24)
where S is the value of objective function and
e is poitive small value such that 107*.

4 NUMERICAL RESULTS

Since the purpose of this study is to examine
the efficiency of MSLP compared with tradi-
tional SLP, simulated data for the analytical
model is used instead of actually recorded
data. The model to be idetified is a linear
chain oscillator, as shown in Fig.1l, with §
degree of freedom. The system parameters are
shown in Table 1. In the analysis, transfer
function between the base and lowest mass(mass
1) of the system is calcurated at 100 fre-
quency points of equal inteLvals between 0. 1Hz
~10.0Hz, which is used as H(w ) in Eq. {11).
Therefore, the transfer function used in this
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paper is of noise free. In the following, the
stiffness and damping coefficients are iden-
tified, assuming known mass. All of the
initial approximation of stiffness and damping

coefficients are 1.5 muliplied by exact values.

We adopt 10™* as & in Eq.(24).

Table 1 Exact values of parameters
i mi ki ci
[t-s*/cm] [t/cm] [t-s/cm]
5 0.50 300.0 1. 50
4 0.50 350.0 1. 78
3 0.50 400.0 2.00
2 0.50 450.0 2.25
1 0.50 500.0 2. 50

4.1 Application of SLP

The results of identification by SLP is shown
in Fig. 2, Fig.3 and Table 2. Move limit is
gradually smaller when the solution fluctuates
in the process of iteration. Fig.2 is the
convergence process of stiffness and damping
coefficients. In the figure, horizontal axis
is the number of iteration and vertical one is
value of each parameter, and broken line
corresponds to exact value of each parameter.
Stiffness coefficients almost converge to the
exact values around 40 iterations. Damping
coefficients, however, have not converged by
100 iterations yet. In Table 2, initial
values, estimated values and ratios of the
former to latter are shown. Damping coeffi-
cients contain maximum error of 27% in
estimated values.

Table 2 Results of identification by SLP
Initial Estimated Est. /Exact
i ki ci ki ci ki/ki ci/ci
5 450 2.2%50 300 1.145% 0.999 0.763
4 525 2.629% 351 2.122 1.003 1.213
3 600 3.000 400 2.545 1.008 1.273
2 675 3.875 451 2.451 1.002 1.089
1 750 3.750 497  2.344 0.994 0.938
Fig. 3 shows the value of objective function

in the process of iteration. In the figure
horizontal axis is the number of iteration and
vertical one is the sum of square error of
transfer functions. Fig. 3 as well as Fig. 2
expose the defect of SLP that convergency is
not good in the neighborhood of a optimum
point.

4.2 Application of MSLP

The results of identification by MSLP is shown
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Fig.5 and Table 3. In order,to save
computational time, SLP is used in the early
stage of the process, namely, first 15 itera-
tions are carried out by SLP. As to the
terminating criterion of local iteration in
MSLP, we adopt total number of iteration of 20.
Stiffness coefficients almost converge to the
exact values about 20 iterations, and another
12 iterations are enough to satisfy the
terminating criterion of Eq. (24). Stiffness
and Damping coefficients are estimated within
the error of 0.1% and 2%, respectively.

in Fig. 4,

Table 3 Results of identification by SLP &
MSLP
Initial Estimated Est. /Exact
i ki ci ki ci ki/ki ci/ci
5| 450 2.250 300 1.489 1.000, 0.993
4 525 2.625 350 1.784 1.000 1.019
3| 600 3.000 400 2.034 0.999 1.017
2| 675 3.375 451 2.259 1.001 1.004
1 750 3.750 500 2.462 1.000 0.985

Fig. 6 shows the transfer functions calcurated
by exact, initial and estimated parameters.
Estimated transfer function is in good agree-
ment with exact one.

Thus, it is demonstrated that the conver-
gency of unknown parameters are dramatically
improved by using MSLP compared with using
only SLP.
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Figure 6 Transfer functions

5 CONCLUSIONS

A simple and efficient optimization scheme
based on SLP(Successive Linear Programming)
has been developed for identification of
stiffness and damping coefficients of a linear
chain oscillator. Near a optimum point, the
second-order terms in the Taylor series expan-
sion dominate. In this scheme, objective
function, which are approximated by up to the
second-order terms in the Taylor series expan-
sion, is minimized by SLP in iterations. The
features and results in this paper are as
follows;

1. Only the information about the sign of the
first-order and second-order partial derive-
tive of each parameter is required to perform



identification by SLP and MSLP, in such
problem that does not have any constraints but
move limit of parameters to be identified.

9. The second-order partial derivatives can
easily be derived from the first-order ones in
a linear chain oscillator.

3. The convergency is dramatically improved by
using MSLP.
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APPENDIX
Partial derivatives of transfer function
(1) First-order partial derivatives

Vector of transfer functions between masses
and the base is expressed by
Hw)=Alw) 'Flw) (A1)
where H(w)=(Xn(w)/Xn(m).Xz(w)/X»(w).”’.
Xn(w)/Xe(w)}. In the following, we abbre-
viate (w) for the sake of simplicity in
expression.
The first-order partial derivatives of H

with respect to a parameter a, is

} (A2)

dH [ 3F 3 A

-A'l
d a, 4 a, 4 a

where dF/3 a, and & A/0 a, are obtained as

follows.

i)3F/d a,
OF/8 ki={Xo,0,-,0}
dF/dky={0,0,--+,0} ,3=2,3,+++,n

OF/8c,=iw -3F/dk, 1

1,2, +++.n
(43)
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ii)dA/0 a,

3 A (1 0 « « -0
=10 0 - -0
0}(, : :
Lo 0 - -0
1 J=2 J-1 ) 3+
(0--+«0 0 0 0 0 !
3 A 6. -0 0 0 0 - .6 i~3
=[ 0 - -0 1 -1 0 - -0 i-
a3k, 0 - «0-1 1 0 - -0 !
0 - <0 0 0 - -0 (e
L0 0 0 0 0 . 0 °
=2, 3, n
OA/Dc=iw+-d A/ Kk, Li=l2, e
(A4)

(2) Second-order partial derivatives

The second-order partial derivatives of H
with respect to parameters a,, a is

d*H 3 °*F A
—— = A"! - H
da,;dax 0 a,;d ax da,;d a

dA aF dA dF
da, 4 ax 3 a. d a,
‘j=1’2'...n
. k=1,2,++n
(AS)
where a is k or ¢. The second-order partial

derivatives of A and F are null matrix and
null vector, respectively, taking account of
Eq. (Ad). Therefore, Eq. (A5) reduces to

[ dA dF
=—A"
d a, J ax

3 A oF J
+
8 a. d a,
(A6)
Thus, the second-order partial derivatives are

calcurated by first-order partial derivatives
of A and F which are shown in Eq. (A3) and (A4).

a*H

8ajaau




