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Dynamic analysis of a strain softening bar
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ABSTRACT: In aseismic design it often becomes necessary to permit a certain degree of cracking while
designing structures to be able to sustain the Maximum Credible Earthquake. This need for post-cracking
dynamic analysis has been dealt with by using the concept of strain softening. Numerical solutions using
strain softening have been plagued by many problems. This paper highlights attempts by the authors to
tackle some of them. An elastoplastic strain softening bar is subjected to dynamic forces in the form of
prescribed end velocities. The equations of motion are directly integrated using predictor corrector form of
Newmark scheme. A total residual strategy wherein iterations are always related to the converged solution
at the end of the previous time step is used to prevent spurious yielding, along with the concept of constant
fracture energy release rate to obtain mesh objectivity. The results show a fairly good, localised, high strain
region. However, pure elastic unloading adjoining the localised region is delayed.

1 INTRODUCTION

With the continuing construction of structures of
importance in the seismic environment it is becom-
ing increasingly important to evolve sophisticated
analytical techniques so that these structures can
be designed with the required confidence. While
designing structures to be able to sustain the Max-
imum Credible Earthquake, during there lifetime,
it becomes imperative, due to economic consider-
ations, to permit some structural components to
undergo cracking to a certain extent. This neces-
sitates the need for post-cracking dynamic analy-
sis. The process of progressive failure or damage
has been represented with some success in static
analysis with the aid of the concept of strain soft-
ening (Willam et al. 1984; Ottosen 1986; Bazant
and Chang 1987; Pankaj 1990; Bicanic and Pankaj
1990a,b; Pankaj and Bicanic 1991; etc.), coupled
with the smeared crack analysis. Strain softening
represents the decline of stress at increasing strain.
In the past it has been often argued that softening
is unacceptable in analysis as it is not a material
property. However, now it is well recognised that
softening can be used to provide sxpedient macro-
scopic models (Read and Hegemier 1984) in which it
is represented in the form of non-local laws (Willam
et al. 1984; Ottosen 1986; Bazant and Chang 1987).
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Analytically it has been shown that the length of
strain softening region localises into a point, for
one dimensional (1-D) problems and some closed
form solutions to simple problems have been ob-
tained (Bazant and Belytschko 1985; Belytschko et
al. 1987; Pankaj 1990). However, numerical solu-
tions using finite element method have been plagued
by problems of mesh sensitivity (different solutions
being obtained for different meshes), load step sen-
sitivity (Pankaj 1990) and by the inability of captur-
ing the localisation phenomenon. This paper high-
lights some attempts by the authors in the above
direction for a simple dynamic problem.

2 MESH SENSITIVITY

It has been widely agreed that objective, i.e. finite
element mesh insensitive predictions of localised fail-
ure can be obtained if the local material softening
law is made mesh dependent, on the basis of con-
stant fracture energy release rate (Hillerborg et al.
1976; Bazant and Oh 1983; Willam et al. 1985).

For one dimensional problems, however, it is pos-
sible to evolve the mesh dependent (length depen-
dent for 1-D) softening modulus without resorting
to fracture energy (Pankaj 1990).

Consider a bar of length L in uniaxial tension
caused by prescribed end displacement. If this bar



is discretized as a single element and it is assumed
that it undergoes strain softening, which is confined
to a small zone but can be represented in the form of
a bilinear stress-strain curve with slope F and E,;,
thus asserting that the entire bar is an equivalent
continuum element, the displacement of the bar d
is
.y _ (9, 9—0
d_.s_r,_(}_,aﬂn———E‘l )L )
where ¢ and oy are the stress in the bar and the
ultimate stress respectively. If the same bar is dis-
cretized into n elements equal in length, but soften-
ing is confined to a single element, n — 1 elements
will unload after achieving peak stength while one
element will continue to soften. Let the softening
slope of this single element be E,,,. If the stress in
the bar is again o then the displacement d can be
written as

_(n—1\ o gy o’,-—a)é
d‘( " )EL+(E+ )

Equating equations 1 and 2 the softening modulus
E,, for the n bar discretization, that gives the same
stress response as a single bar, can be obtained as
a function of F and E,; as

EE‘I

En= = DEntnE (3)

Thus without resorting to fracture energy it can
be seen that softening modulus cannot be treated
as a local material property but has to vary with
the mesh discretizations. If the concept of invariant
fracture energy release rate is used with the com-
posite damage model (Willam et al. 1985) the same
result can be obtained (Pankaj 1990).

In plasticity it is more convenient to use the mod-
ulus H which is defined as

.fi.g = do = £, (4)
de, de—de, 1-E,[E

where de, and de, represent elastic and plastic strain
increments respectively. From this the relation be-

tween H; and H, (modulii for 1 and n bar dis-
cretizations respectively) can easily be derived as

H,
Hp=— ()

3 LOAD STEP SENSITIVITY

The load sensitivity issue arises when traditional in-
cremental elastoplasticity algorithms are employed.
For a simple uniaxial tension test, true localisation
solution will involve only one element having en-
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tered the post peak range, whereas all other ele-
ments will elastically unload. However, for a large
displacement, the elastic predictor stresses in more
than one (possibly all) elements will exceed tensile
strength level. Two iteration strategies have been
used to achieve convergence — (a) the subincre-
mental residual strategy and (b) the total residual
strategy. These strategies, whose nomenclature as
above is due to the first author (1990), can be briefly
described as follows.

In subincremental residual strategy the residual
(out of balance) forces are calculated with refer-
ence to the stress state at the end of every iteration
subincrement. Thus plastic strains are accumulated
as the stresses are successively being reduced to the
current strength limit, Such a strategy in the case of
a large a dispacement increment leads to the accu-
mulation of permanent plastic strains in zones that
in reality never experience inelastic behaviour. On
the other hand, in total residual strategy, the resid-
ual forces during iterations are always related to
the converged solution at the end of the previous
load step and iterations are not treated as subin-
crements. In this strategy the algorithm itself will
“push back”, into the elastic zone, the stress points
that had “temporarily” violated the tensile strength
limit, during computational elastic predictor phase,
without accumulation of permanent strains.

4 CAPTURING LOCALISATION

A finite element analysis should be capable of cap-
turing localisation or cracking, which in the limit
represents a discontinuity as precisely as possible.
It has been suggested (Bazant 1986) that a region
that softens cannot be finite and localisation must
correspond to infinite strains caused by discontinu-
ous displacements, while the entire domain outside
the discontinuity remains elastic. Consequently the
best finite element solution is the one which is most
localised. However, in a two/three dimensional con-
text, a fine mesh does not guarantee fine localisa-
tion bands (Pankaj 1990). It has been argued that
meshes need to be designed in a manner, that they
are capable of reproducing narrow bands of high
inelastic deformation, else only diffused localisation
bands may be obtained. For one dimensional prob-
lems mesh design in the manner discussed by Bi-
canic and Pankaj (1990b) is not required. However,
difficulties in capturing localisation, in numerical
analysis, are still encountered when (a) unequal el-
ements are used (Pankaj 1990); (b) the problem is
a bifurcation problem (de Borst 1986) or (c) in case



of dynamic problems (Pramono 1988). We shall
discuss a simple dynamic problem in the following
section and highlight some of the difficulties encoun-
tered.

5 A DYNAMIC PROBLEM

Strain softening continues to be a highly researched
topic in static as well as dynamic analysis. Some
insight on softening and localisation analysis is now
available for static analysis. However, limited ana-
lytical (Bazant and Belytschko 1985; Belytschko et
al. 1987), numerical (Pramono 1988; Parkash 1991)
and experimental (Gran and Seaman 1988) results
are available for dynamic problems. Here a simple
wave propagation problem whose exact solution is
available is numerically analysed using the predic-
tor corrector form of Newmark’s direct integration
scheme (Owen and Hinton 1980).

5.1 Problem formulation and ezact solution

Consider a bar of length 2L, with a unit cross-
section its mass per unit length is p. Let the bar be
loaded by forcing both ends to move simultaneously
outward, with constant opposing velocity of magni-
tude c. The boundary conditions are (for t > 0)

—L for u=—ct
u=u(z,t)={ L foru=ct

where, u(z,t) is the displacement at z at time t.
Initially, at ¢ = 0, the bar is undeformed and at
rest, s.e. ¥ = & = 0. Due to symmetry this problem
is equivalent to a bar fixed at z = 0.

The material of the bar has stress strain relation-
ship, which exhibits elastic behaviour with Young’s
modulus E upto peak stress oy, followed by a strain
softening curve F(e), a positive monotonic continu-
ous function which has a negative slope. F'(¢) but,
otherwise, an arbitrary shape and which attains
zero stress either at some finite strain or asymp-
totically at infinite strain.

The unloading (¢ < 0) and reloading (¢ > 0),
upto the last previous maximum strain, is elastic
with modulus E and, if the strain increases beyond
this maxium the (virgin) strain-softening diagram
is followed.

Suppose first that stresses exceeding o, (or equiv-
alently strains exceeding ¢;) are never produced,
i.e., the bar remains linearly elastic. The differ-
ential equation of motion is hyperbolic and reads

8% A%
o = am ©)

where v = 1/ E/p is the wave speed.

For the given boundary and initial conditions,
the solution, for ¢t < 2£, is (Bazant and Belytschko
1985)

z‘:L)+c(t+z—L) (7)

= —c(t —
u c{ -

where the Mc Cauley brackets (-) extract only the
positive values. The strain is

du

az

L -L
z+t FHE+ )| (®)
v v

€=

=

where H denotes Heaviside step function.

The strain consists of two tensile step waves of
magnitude ¢/v, emanating from the ends of the bar
and moving towards the center. After the waves
meet at the midpoint, the strain is doubled. The
stress 0 = Ee.

Obviously, if ¢c/v < €;/2, then assumption of
elastic behaviour holds for t < 2L/v. If ¢;/2 <
¢/v < ¢, the previous solution holds for t < L/v
and the midpoint cross section (x = 0) enters the
strain softening regime at t = L/v, 1.e. when the
wave fronts meet at the midpoint. For such a case
Bazant and Belytschko (1985) derived an exact so-
lution. The complete solution according to them
for0<t<2L/vandz<0is

L—-z

)=t - ) 9)

u=-—c(t—x+L
v

and

-H(t—

) (10)

e=£H(t—x+L L-z
v v

For z > 0, a symmetric solution applies, while for

z — 0%, u=-2¢(t-L/v)
z— 07, u=2c(t—L/v)

The superscripts — and + indicate points on the left
and right of the interface. So, after time t; = L/v,
the displacements develop a discontinuity at z = 0,
with a jump of magnitude 4c{t — L/v). There-
fore, strain near z = 0, t.e. at centre of bar is
¢ = 4¢(t — L/v)6(z), in which é(z) is the Dirac’s
delta function.

The complete strain field for z < 0and 0 < t <
2L/v is,

- H(t- %f) + 4(vt — L)&(z)]

(11)

z+ L
v
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5.2 Numerical solution

Numerical analysis of a bar of unit area subjected to
constant velocity applied at both ends in the out-
ward direction was carried out. The bar was as-
sumed to behave elastically (E = 2 X 10° N/cm?)
upto a critical stess (o; = 1.5 x 10° N/em?) after
which it would undergo strain softening with a con-
stant softening modulus.

Two different discretizations were employed for
numerical analysis. In the first the bar was divided
into 9 elements of equal length and in the other into
21 equal elements. The concept of constant fracture
energy release rate for a 1-D problem implies that
the softening modulus H be proportional to element
‘size I, i.e.

Hxl (12)

So, if the element lengths are /; and !, the softening
modulii are related as

H

E = i; (13)
In other words, for the problem under considera-
tion if the softening modulus H = —~20000 N/cm?
for 9 element discretization, the corresponding soft-
ening modulus for 21 element discretization is
—8571.43 N/cm?. In addition to the above cor-
responding values of softening modulii another cor-
responding set in which H = —46666.67 N/cm? for
9 element dicretization and H = —20000 N/cm?
for 21 element discretization was adopted for com-
putation. The total residual strategy was adopted.
Damping was taken as zero and a diagonal lumped
mass matrix was used. The Newmark’s parameters,
7 = 0.5 and 6§ = 0.25 were adopted. A time step
At = 0.1 sec was used.

6 DISCUSSION OF RESULTS

The displacement, total strain and stresses obtained
from numerical analysis at different times have been
plotted in Figures 1 to 4. Three instants on the time
axes were chosen for the plots — 3 sec at which the
opposite stress waves have not crossed each other;
6.5 sec and 7.5 sec when the stress waves have al-
ready encountered each other and the elastic stress
limit has been exceeded.

At 3 sec the response remains elastic (Figures 1
and 2). It can be seen that the displacement is more
or less as predicted by the closed form solution. The
stress and strain waves of approximately constant
magnitude progress towards the centre of the bar.
Clearly the magnitude of the softening modulus has
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no effect on the response at 3 sec. Also 21 elements
discretization produces a response that is closer to
the exact solution as compared to the 9 elements
discretization.

At 6.5 and 7.5 sec the stress waves have already
encountered each other. The exact solution predicts
that once the stress waves encounter each other the
strain in an infinitesimal band at the center would
shoot up (delta function response) and a zero mag-
nitude stress wave would travel outward exhibiting
unloading. Thereby the localisation of strain would
be confined to the centre. In this study it was seen
that the post encounter period of the stress waves is
accompanied by a steep rise in strains in the central
element (Figures 1 to 4).

However, the true localisation solution, wherein
elements adjacent to the central element immedi-
ately start unloading and plastic strains remain con-
fined to the central element was not achieved. Un-
loading does start (as has been indicated by sym-
bol U in the above mentioned Figures 1 to 4) in
elements adjacent to the central element but this
happens subsequent to these elements entering the
post-peak strain levels. Strictly, mesh sensitivity
issues cannot be discussed as true localisation solu-
tion was not achieved, however, it can be seen that
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Figure 1: (a) Displacement, (b) strain and (c) stress
configurations for 9 element discretization with H =
—20000N/cm?
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Figure 2: (a) Displacement, (b) strain and (c) stress
configurations for 21 element discretization with
H = —8571.4N/cm?
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Figure $: (a) Displacement, (b) strain and (c) stress
configurations for 9 element discretization with H =
—46666.7N/cm?
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Figure 1 compares well with Figure 2, as far as stress
and displacement response is concerned. As can be
expected with finer discretization, the strain in the
central element is much higher (Figure 2). Similar
observations can be made by comparing Figures 3
and 4.

Bazant and Belytschko (1985) showed that the
softening modulus has no effect on the posten-
counter session of the waves. However, numerical
analysis shows that higher degree of localisation in
the form of a steep strain rise in the centre and
quick unloading are achieved when a steeper soft-
ening modulus is employed (Figures 3 and 4).
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Figure 4: (a) Displacement, (b) strain and (c) stress
configurations for 21 element discretization with
H = —20000N/cm?

7 CONCLUSIONS

It can be said that a good localisation is achieved
in the form of a strain jump in the central ele-
ment. The numerical results for the discretized
problem are similar to those obtained earlier using
explicit integration and viscoplasticity (Pramono
1988). They, however, do not match the results
of the continuum problem. First obvious reason
is that a discretized problem can never truly rep-
resent a continuum problem. Secondly, unlike the



continuum case in which a strain jump takes place
instantly when the two waves encounter each other,
in the discretized case a strain jump is only possi-
ble when the two opposing waves have crossed the
central element.

Another positive aspect of the numerical analysis,
in addition to obtaining high strains in the centre,
is that elements near the central element show un-
loading, though it is delayed. Moreover, improved
solutions are obtained with the finer discretization
and steeper softening slope.
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